R/diversitree-branches.R

Defines functions initial.tip.xxsse dt.tips.ordered dt.tips.grouped make.all_branches.dtlik make.branches.dtlik make.ode make.branches.comp root_p_calc get.ordering make.cache all_branches.list all_branches_matrix

## This is the general calculation code for diversitree.  Many models
## require that calculations occur down a branch, and the results of
## these calculations are used as initial conditions for the next
## branch.  There are several different implemented models using this
## approach:
##   - BiSSE (model-bisse.R)
##   - MuSSE (multi-state BiSSE - model-musse.R)
##   - QuaSSE
##   - Time-dependent BiSSE, MuSSE
##   - BD2 (HIV model)

## I have abstracted most of the calculations in a (hopefully) general
## way.  The function 'all_branches' does most of the calculations;
## this looks after all the book-keeping as calculations proceed down
## a tree.  Models will generally use this as their main function, but
## with additional root state calculations after this calculation has
## finished (see model-bisse.R for the canonical example of this).

## all_branches takes arguments
##   pars, cache, initial.conditions, branches
## These are
##
##   pars: parameters for the model.  No checks are done at all on the
##   size or contents of this (all_branches knows nothing about what
##   is appropriate)
##
##   cache: A cache object produced by make.cache(), possibly
##   augmented with additional information.
##
##   initial.conditions: This calculates the initial conditions for an
##   *internal branch*, given the values of variables at the base of
##   its two daughters (this is not the initial conditions for the
##   tips, which are computed elsewhere - see make.cache).  This
##   function takes the arguments:
##     init, pars, is.root
##   where
##     'init': a two-row, npar column matrix of initial conditions
##     corresponding to the base conditions of the two daugher
##     branches.
##     'pars': the parameters as given into all_branches
##     'is.root': boolean indicating if the node is the root or not
##   This function must return a vector of length npar+1.  The first
##   of these is the log-compensation value (zero if none applied),
##   and the rest are the new initial conditions.  all_branches checks
##   to make sure that the log-compensation value is finite as a way
##   of making sure that the calculations succeeded.
##   initial.conditions may produce informative errors instead, or
##   warnings to inform of this failure.
##
##   branches: This function calculates values of variables at the
##   base of a branch, given that branchs' initial conditions.  It
##   takes arguments:
##     y, len, pars, t0
##   where
##     'y': a vector of initial conditions (length npar)
##     'len': the length of the branch
##     'pars': the parameters as passed to all_branches
##     't0': the time at the tip of the branch
##   Note that the base of the branch is at time t0 + len.  This
##   function must return a vector of length 'npar', being the
##   variables at the base of the branch.
##
##   'branches' may be able to deal with multiple branches at the
##   present (this is the case in BiSSE, where because there are only
##   three possible initial conditions, variables required for short
##   branches are often already computed on longer branches.  If
##   presented with a vector of 'len' at 'depth=0', branches must
##   return a matrix of variables of dimensions length(len) x npar.
##   Whether this is required or not depends on the initial conditions
##   produced by make.cache - see the documentation there and also for
##   the bisse initial.condition and branches functions.

## The 'as.list' argument is to handle cases, such as QuaSSE, where
## the output from branches() is of variable length and the result
## should be stored in a list, rather than a matrix.  It is *not* to
## switch between a choice of what is returned.

## TODO: the 'zero' in the tip branches() calls assume that the tree
## is ultrametric.  I can pass in
##   cache$depth[idx]
## but I need to be careful with this, as some depths will be
## 1e-15 and things like that.  This may not be a problem in reality.

all_branches_matrix <- function(pars, cache, initial.conditions,
                                branches, preset=NULL) {
  len <- cache$len
  depth <- cache$depth
  children <- cache$children
  order <- cache$order[-length(cache$order)]
  root <- cache$root

  n <- length(len)
  lq <- rep(0, n)
  n.tip <- cache$n.tip

  y <- cache$y
  branch.init <- branch.base <- matrix(NA, cache$info$ny, n)

  ## TODO: It might be an idea here to check preset is OK:
  ## Must have names target, lq, base
  ## must be of same length.
  if ( !is.null(preset) ) {
    lq[preset$target] <- preset$lq
    branch.base[,preset$target] <- preset$base
  }

  if ( is.null(names(y)) ) { # dt.tips.grouped
    for ( x in y ) {
      if ( !is.null(x) ) {
        ## The above is because sometimes 'x' will be NULL.  This
        ## happens when there is no polymorphism across tips, usually
        ## when most of the tips are unresolved clades.
        idx <- x$target
        branch.init[,idx] <- x$y
        ans <- branches(x$y, x$t, pars, 0, idx)
        lq[idx] <- ans[[1]]
        branch.base[,idx] <- ans[[2]]
      }
    }
  } else { # y$type == "ORDERED"
    tip.t <- y$t
    tip.target <- y$target
    tip.y <- branch.init[,tip.target] <- y$y
    for ( i in seq_along(tip.t) ) {
      idx <- tip.target[i]
      ans <- branches(tip.y[,i], tip.t[i], pars, 0, idx)
      lq[idx] <- ans[[1]]
      branch.base[,idx] <- ans[[2]]
    }
  }

  for ( i in order ) {
    y.in <- initial.conditions(branch.base[,children[i,]], pars,
                               depth[i], i)
    if ( !all(is.finite(y.in)) )
      stop("Bad initial conditions: calculation failure along branches?")
    branch.init[,i] <- y.in
    ans <- branches(y.in, len[i], pars, depth[i], i)
    lq[i] <- ans[[1]]
    branch.base[,i] <- ans[[2]]
  }

  y.in <- initial.conditions(branch.base[,children[root,]], pars,
                             depth[root], root)
  branch.init[,root] <- y.in
  list(init=branch.init, base=branch.base, lq=lq, vals=y.in)
}

all_branches.list <- function(pars, cache, initial.conditions,
                              branches, preset) {
  len <- cache$len
  depth <- cache$depth
  children <- cache$children
  order <- cache$order[-length(cache$order)]
  root <- cache$root

  n <- length(len)
  lq <- rep(0, n)
  n.tip <- cache$n.tip

  y <- cache$y
  branch.init <- branch.base <- vector("list", n)

  if ( !is.null(preset) ) {
    lq[preset$target] <- preset$lq
    branch.base[preset$target] <- preset$base
  }

  if ( is.null(names(y)) ) { # dt.tips.grouped
    for ( x in y ) {
      if ( !is.null(x) ) {
        idx <- x$target
        branch.init[idx] <- list(x$y)
        ans <- branches(x$y, x$t, pars, 0, idx)
        lq[idx] <- unlist(lapply(ans, "[[", 1))
        branch.base[idx] <- lapply(ans, "[", -1)
      }
    }
  } else { # dt.tips.ordered
    tip.t <- y$t
    tip.target <- y$target
    tip.y <- branch.init[tip.target] <- y$y
    for ( i in seq_along(tip.t) ) {
      idx <- tip.target[i]
      ans <- branches(tip.y[[i]], tip.t[i], pars, 0, idx)
      lq[idx] <- ans[[1]]
      branch.base[[idx]] <- ans[-1]
    }
  }

  for ( i in order ) {
    y.in <- initial.conditions(branch.base[children[i,]], pars,
                               depth[i], i)
    ## TODO: This is temporary to acomodate BBM.  Will change
    ## shortly.
    if ( !is.list(y.in) && !all(is.finite(y.in)) )
      stop("Bad initial conditions: calculation failure along branches?")
    branch.init[[i]] <- y.in
    ans <- branches(y.in, len[i], pars, depth[i], i)
    lq[i] <- ans[[1]]
    branch.base[[i]] <- ans[-1]
  }

  y.in <- initial.conditions(branch.base[children[root,]], pars,
                             depth[root], root)
  branch.init[[root]] <- y.in
  list(init=branch.init, base=branch.base, lq=lq, vals=y.in)
}

## This is the minimal cache function, but not calculating initial
## conditions, which will take the element 'y'.
make.cache <- function(tree) {
  ## This works around some ape bugs with class inheritance.
  if (inherits(tree, "phylo"))
    class(tree) <- "phylo"
  edge <- tree$edge
  edge.length <- tree$edge.length
  idx <- seq_len(max(edge))
  n.tip <- length(tree$tip.label)
  tips <- seq_len(n.tip)
  root <- n.tip + 1

  is.tip <- idx <= n.tip

  children <- get.children(edge, n.tip)

  parent <- edge[match(idx, edge[,2]),1]

  order <- get.ordering(children, is.tip, root)
  len <- edge.length[match(idx, edge[,2])]

  ## This is a bit of a hack, but this is to ensure that we can really
  ## compute the depths accurately - this is a problem when there
  ## joins (under split models) that occur right around nodes.
  height <- branching.heights(tree)
  depth <- max(height) - height
  depth2 <- branching.depth(len, children, order, tips)
  i <- abs(depth - depth2) < 1e-8
  depth[i] <- depth2[i]

  if ( is.ultrametric(tree) )
    ## It is possible that an ultrametric tree will not quite have the
    ## tips around zero.  This ensures it, which is is required for
    ## dt.tips.grouped to work at present.
    depth[tips] <- 0

  ## TODO: I don't need this ancestor thing for much - drop it here
  ## and move it to the asr code that actually uses it (this takes a
  ## lot of time, and is only used by the ASR code).
  ## The only place that this is used at all is do.asr.marginal(); it
  ## would be possible to make this as needed when making an
  ## asr.marginal() function.
  anc <- vector("list", max(order))
  for ( i in c(rev(order[-length(order)]), tips) )
    anc[[i]] <- c(parent[i], anc[[parent[i]]])

  ans <- list(tip.label=tree$tip.label,
              node.label=tree$node.label,
              len=len,
              children=children,
              parent=parent,
              order=order,
              root=root,
              n.tip=n.tip,
              n.node=tree$Nnode,
              tips=tips,
              height=height,
              depth=depth,
              ancestors=anc,
              edge=edge,
              edge.length=edge.length)
  ans
}

## Node ordering, as used by make.cache()
get.ordering <- function(children, is.tip, root) {
  todo <- list(root)
  i <- root
  repeat {
    kids <- children[i,]
    i <- kids[!is.tip[kids]]
    if ( length(i) > 0 )
      todo <- c(todo, list(i))
    else
      break
  }
  as.vector(unlist(rev(todo)))
}

ROOT.FLAT  <- 1
ROOT.EQUI  <- 2
ROOT.OBS   <- 3
ROOT.GIVEN <- 4
ROOT.BOTH  <- 5
ROOT.MAX   <- 6
ROOT.ALL   <- ROOT.BOTH
root_p_calc <- function(vals, pars, root, root.p=NULL,
                        root.equi=NULL) {
  if ( !is.null(root.p) && root != ROOT.GIVEN )
    warning("Ignoring specified root state")

  k <- length(vals)

  if ( root == ROOT.FLAT ) {
    p <- 1/k
  } else if ( root == ROOT.EQUI ) {
    if ( is.null(root.equi) )
      stop("Equilibrium root probability not possible with this method")
    p <- root.equi(pars)
  } else if ( root == ROOT.OBS ) {
    p <- vals / sum(vals)
  } else if ( root == ROOT.GIVEN ) {
    if ( length(root.p) != length(vals) )
      stop("Invalid length for root.p")
    p <- root.p
  } else if ( root == ROOT.ALL ) {
    p <- rep(1, k)
  } else {
    stop("Invalid root mode")
  }
  p
}

## Convert a branches function into one that adds log-compensation.
## This is not compulsary to use, but should make life easier.
make.branches.comp <- function(branches, comp.idx, eps=0) {
  if ( length(comp.idx) > 0 )
    function(y, len, pars, t0, idx) {
      ret <- branches(y, len, pars, t0, idx)
      q <- colSums(ret[comp.idx,,drop=FALSE])
      if ( all(q >= eps) ) {
        i <- q > 0
        ret[comp.idx,i] <- ret[comp.idx,i] /
          rep(q[i], each=length(comp.idx))
        lq <- q
        lq[i] <- log(q[i])
        list(lq, ret)
      } else {
        ti <- len[length(len)]/2
        len1 <- c(len[len <= ti], ti)
        len2 <- len[len > ti] - ti
        n1 <- length(len1)

        ret1 <- Recall(y, len1, pars, t0)
        ret2 <- Recall(ret1[[2]][,n1], len2, pars, t0 + ti)
        ret2[[1]] <- ret2[[1]] + ret1[[1]][n1]

        list(c(ret1[[1]][-n1], ret2[[1]]),
             cbind(ret1[[2]][,-n1], ret2[[2]]))
      }
    }
  else
    function(y, len, pars, t0, idx)
      list(rep.int(0, length(len)),
           branches(y, len, pars, t0, idx))
}

make.ode <- function(info, control) {
  control <- check.control.ode(control)
  info <- check.info.ode(info, control)
  backend  <- control$backend
  if ( backend == "gslode" )
    ode <- make.ode.gslode(info, control)
  else if ( backend == "deSolve" )
    ode <- make.ode.deSolve(info, control)
  else # should have been prevented by now
    stop("Invalid backend", backend)
  ode
}

make.branches.dtlik <- function(info, control) {
  info     <- check.info.ode(info, control)
  comp.idx <- info$idx.d
  eps      <- control$eps
  ode      <- make.ode(info, control)
  branches <- function(y, len, pars, t0, idx)
    ode(y, c(t0, t0+len), pars)
  make.branches.comp(branches, comp.idx, eps)  
}

make.all_branches.dtlik <- function(cache, control,
                                    initial.conditions) {
  branches <- make.branches.dtlik(cache$info, control)
  function(pars, intermediates, preset=NULL)
    all_branches_matrix(pars, cache, initial.conditions,
                        branches, preset)
}

## Utility functions for organising initial conditions.
dt.tips.grouped <- function(y, y.i, cache) {
  tips <- cache$tips
  t <- cache$len[tips]
  
  if ( !is.list(y) )
    stop("'y' must be a list of initial conditions")
  if ( max(y.i) > length(y) || min(y.i) < 1 )
    stop("'y.i' must be integers on 1..", length(y))
  if ( length(y.i) != length(tips) )
    stop("y must be same length as tips")
  if ( length(y.i) != length(t) )
    stop("y must be the same length as t")

  if ( any(is.na(y.i)) ) {
    k <- cache$info$k
    if ( !is.null(k) && !is.na(k) && length(y) == k + 1 )
      y.i[is.na(y.i)] <- k + 1
    else
      stop("Unhandled NA values in state vector")
  }

  if ( max(abs(cache$depth[tips])) > .Machine$double.eps^0.5 )
    stop("This currently only works for ultrametric trees")

  types <- sort(unique(y.i))
  res <- vector("list", length(types))

  for ( i in seq_along(types) ) {
    type <- types[i]
    j <- which(y.i == type)
    ord <- order(t[j])
    res[[i]] <- list(y=y[[type]], y.i=i,
                     target=tips[j][ord], t=t[j][ord],
                     type="GROUPED")
  }
  res
}

dt.tips.ordered <- function(y, tips, t) {
  i <- order(t)

  if ( is.list(y) ) {
    if ( length(y) != length(tips) )
      stop("y must be same length as tips")
    if ( length(y) != length(t) )
      stop("y must be the same length as t")
    list(target=tips[i],
         t=t[i],
         y=y[i])
  } else if ( is.matrix(y) ) {
    if ( ncol(y) != length(tips) )
      stop("y must be same length as tips")
    if ( ncol(y) != length(t) )
      stop("y must be the same length as t")
    list(target=tips[i],
         t=t[i],
         y=y[,i], type="ORDERED")
  } else {
    stop("y must be a list or matrix")
  }
}

## By the time this hits, unresolved clades and any other non-standard
## tips have been removed.  We have an index "tips" (equal to 1:n.tip
## for plain bisse) that is the "index" (in phy$edge numbering) of the
## tips, and a state vector cache$states, both of the same length.
## The length of the terminal branches is cache$len[cache$tips].
##
## Allowing for unknown state tips, there are three possible states
##   (0, 1, NA -> 1, 2, 3)
## Initial conditions at the tips are given by their tip states:
## There are three types of initial condition in bisse:
##             E0     E1     D0   D1
##   state0: c(1-f_0, 1-f_1, f_0, 0  )
##   state1: c(1-f_0, 1-f_1, 0,   f_1)
##   state?: c(1-f_0, 1-f_1, f_0, f_1)
initial.tip.xxsse <- function(cache, base.zero=FALSE) {
  k <- cache$info$k
  f <- cache$sampling.f

  y <- matrix(rep(c(1-f, rep(0, k)), k + 1), k+1, 2*k, TRUE)
  y[k+1,(k+1):(2*k)] <- diag(y[1:k,(k+1):(2*k)]) <- f
  y <- matrix.to.list(y)

  y.i <- cache$states
  if ( base.zero ) # used by bisse and geosse
    y.i <- y.i + 1L
  y.i[is.na(y.i)] <- k + 1

  ## TODO: I may have to drop support for this, or move it elsewhere.
  if ( !is.null(multistate <- attr(cache$states, "multistate")) ) {
    y.multi <- unique(multistate$states)
    y.i.multi <- match(multistate$states, y.multi)

    y <- c(y, lapply(y.multi, function(x) c(1-f, x)))
    y.i[multistate$i] <- y.i.multi + k + 1
  }

  dt.tips.grouped(y, y.i, cache)
}

Try the diversitree package in your browser

Any scripts or data that you put into this service are public.

diversitree documentation built on May 29, 2024, 4:38 a.m.