R/xdate.floater.R

Defines functions xdate.floater

Documented in xdate.floater

xdate.floater <- function(rwl, series, series.name = "Unk", min.overlap=50, n=NULL,prewhiten = TRUE, biweight=TRUE,
                          method = c("spearman", "pearson", "kendall"),
                          make.plot = TRUE, return.rwl = FALSE, verbose = TRUE) {
  
  method2 <- match.arg(method)
  # Trim series in case it has NA (e.g., submitted stright from the rwl)
  idx.good <- !is.na(series)
  series <- series[idx.good]
  nSeries <- length(series)
  ## turn off warnings for this function
  ## The sig test for spearman's rho often produces warnings.
  w <- options(warn = -1)
  on.exit(options(w))
  
  
  ## Normalize
  tmp <- normalize.xdate(rwl, series, n, prewhiten, biweight)
  master <- tmp$master
  
  series2 <- tmp$series
  idx.good <- !is.na(series2)
  series2 <- series2[idx.good]
  
  
  ## trim master so there are no NaN like dividing when
  ## only one series for instance.
  idx.good <- !is.nan(master)
  x <- master[idx.good]
  
  yrs <- as.numeric(names(x))
  y <- series2
  
  nx <- length(x)
  ny <- length(y)
  
  if(verbose){
    cat("Original rwl years: ", min(time(rwl)), " to ", max(time(rwl))," (", length(time(rwl)), ")\n",sep="")
    cat("Detrended rwl years: ", min(yrs), " to ", max(yrs), " (", length(yrs), ")\n",sep="")
    cat("Original series length:", nSeries, "\n")
    cat("Detrended series length:", ny, "\n")
    cat("Minimum overlap for search:", min.overlap, "\n")
    }
  
  if(min.overlap > ny) {stop("min.overlap must be less than series length after detrending")}
  
  minYrsOut <- numeric()
  maxYrsOut <- numeric()
  rOut <- numeric()
  pOut <- numeric()
  nOut <- numeric()
  # need to crawl through backwards because, the start years on both the master 
  # and the series can be impacted by the nomalizing (e.g., hanning, prewhiten). 
  # The ends can't be. So crawl through backwards and calc dates that way
  crawl <- (nx+(ny-min.overlap)):(min.overlap)
  edgeCounter <- 0
  for(i in crawl){
    if(i > nx){
      xInd <- (i-ny+1):nx
      yInd <- 1:(ny-(i-nx))
      tmp <- cor.test(x[xInd],y[yInd], method = method2,alternative = "greater")
      rOut[i] <- tmp$estimate
      pOut[i] <- tmp$p.val
      # the dating here is weird. The end date is going to be the max of xInd plus the overlap off the edge.
      maxYrsOut[i] <- max(yrs[xInd]) + ny - min.overlap + edgeCounter
      edgeCounter <- edgeCounter - 1
      minYrsOut[i] <- maxYrsOut[i] - nSeries + 1
      nOut[i] <- length(x[xInd])
    }
    if(i >= ny & i <= nx){
      xInd <- (i-ny+1):i
      tmp <- cor.test(x[xInd],y, method = method2,alternative = "greater")
      rOut[i] <- tmp$estimate
      pOut[i] <- tmp$p.val
      maxYrsOut[i] <- max(yrs[xInd])
      # the end date is right, so subtract the original series length to get start date
      minYrsOut[i] <- max(yrs[xInd]) - nSeries + 1
      nOut[i] <- length(x[xInd])
    }
    if(i < ny){
      xInd <- 1:i
      yInd <- xInd + ny-length(xInd)
      tmp <- cor.test(x[xInd],y[yInd], method = method2,alternative = "greater")
      rOut[i] <- tmp$estimate
      pOut[i] <- tmp$p.val
      maxYrsOut[i] <- max(yrs[xInd])
      # the end date is right, so subtract the original series length to get start date
      minYrsOut[i] <- max(yrs[xInd]) - nSeries + 1
      nOut[i] <- length(x[xInd])
    }
  }
  res <- data.frame(minYrsOut,maxYrsOut,rOut,pOut,nOut)
  names(res) <- c("first","last","r","p","n")
  mask <- rowSums(is.na(res))==0
  res <- res[mask,]
  # best cor
  rBest <- which.max(res$r)
  firstBest <- res$first[rBest]
  lastBest <- res$last[rBest]
  rBest <- res$r[rBest]
  pBest <- res$p[rBest]
  
  names(series) <- firstBest:lastBest
  tmp <- as.rwl(data.frame(series))
  names(tmp) <- series.name 
  rwlOut <- combine.rwl(rwl,tmp)
  
  ## plot
  if (make.plot) {
    op <- par(no.readonly=TRUE) # Save par
    on.exit(par(op))            # Reset par on exit
    
    # plot 1 -- seg plot with new series inserted
    yr <- as.numeric(row.names(rwlOut))
    first.year <- as.matrix(apply(rwlOut, 2, yr.range, yr.vec=yr))[1, ]
    last.year <- as.matrix(apply(rwlOut, 2, yr.range, yr.vec=yr))[2, ]
    neworder <- order(first.year, decreasing=FALSE)
    segs <- rwlOut[, neworder, drop=FALSE]
    n.col <- ncol(segs)
    seq.col <- seq_len(n.col)
    for (i in seq.col) {
      segs[[i]][!is.na(segs[[i]])] <- i
    }
    seg2col <- which(names(segs)==series.name)
    segs.axis2 <- names(segs)
    segs.axis4 <- names(segs)
    segs.axis2[seq(2,n.col,by=2)] <- NA
    segs.axis4[seq(1,n.col,by=2)] <- NA
    
    par(mfcol=c(2,1))
    par(mar=c(-0.1, 5, 2, 5) + 0.1, mgp=c(1.1, 0.1, 0), tcl=0.5, 
        xaxs="i", yaxs="i")
    plot(yr, segs[[1]], type="n", ylim=c(0, n.col+1), 
         xlim=range(res$first,res$last),axes=FALSE,
         ylab="", xlab="")
    abline(h=seq.col,lwd=1,col="grey")
    grid(ny = NA)
    apply(segs, 2, lines, x=yr, lwd=4,lend=2, col="grey60")
    abline(h=seq.col[[seg2col]],lwd=1,col="darkgreen")
    lines(x=yr,y = segs[[seg2col]], lwd=4,lend=2, col="darkgreen")
    axis(2, at=seq.col, labels=segs.axis2, srt=45, tick=FALSE, las=2)
    axis(4, at=seq.col, labels=segs.axis4, srt=45, tick=FALSE, las=2)
    axis(3)
    box()
    # plot 2
    sig <- qnorm(1 - 0.05 / 2) / sqrt(res$n)
    par(mar=c(2, 5, -0.1, 5) + 0.1, yaxs="r")
    plot(res$last,res$r,type="n",xlab="Year", ylab="End Year Cor.",
         xlim=range(res$first,res$last),axes=FALSE)
    lines(res$last,sig, lty="dashed")
    lines(res$last,res$r,col="grey")
    abline(h=0)
    points(lastBest,rBest,col="darkgreen",pch=20)
    segments(x0 = firstBest, x1 = lastBest,y0 = rBest, y1 = rBest, 
             lty="dashed", col="darkgreen")
    points(firstBest,rBest,col="darkgreen",pch=20)
    text(x = lastBest, y = rBest, labels = lastBest, 
         col="darkgreen", adj=c(0,1))
    text(x = firstBest, y = rBest, labels = firstBest, 
         col="darkgreen", adj = c(1,1))
    axis(1);axis(2);box()
  }
  if(return.rwl){
    res <- list(res,rwlOut)
  }
  if(verbose){
    cat("Years searched:", min(res$first), "to", max(res$last), "\n")
    cat("Highest overall correlation for series is", round(rBest,2), "with dates", firstBest, "to", lastBest, "\n")
  }
  res
}

Try the dplR package in your browser

Any scripts or data that you put into this service are public.

dplR documentation built on June 22, 2024, 9:59 a.m.