Nothing
"logistic" <- function(
fixed = c(NA, NA, NA, NA, NA), names = c("b", "c", "d", "e", "f"),
method = c("1", "2", "3", "4"), ssfct = NULL,
fctName, fctText)
{
## Checking arguments
numParm <- 5
if (!is.character(names) | !(length(names) == numParm)) {stop("Not correct 'names' argument")}
if (!(length(fixed) == numParm)) {stop("Not correct 'fixed' argument")}
## Handling 'fixed' argument
notFixed <- is.na(fixed)
parmVec <- rep(0, numParm)
parmVec[!notFixed] <- fixed[!notFixed]
# parmVec1 <- parmVec
# parmVec2 <- parmVec
## Defining the non-linear function
fct <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow=TRUE)
parmMat[, notFixed] <- parm
parmMat[,2]+(parmMat[,3]-parmMat[,2])/((1+exp(parmMat[,1]*(dose-parmMat[,4])))^parmMat[,5])
}
## Defining self starter function
if (FALSE)
{
ssfct <- function(dataFra)
{
dose2 <- dataFra[,1]
resp3 <- dataFra[,2]
startVal <- rep(0, numParm)
startVal[3] <- max(resp3) + 0.001 # the d parameter
# startVal[3] <- mean(resp3[dose2 == max(dose2)]) + 0.001
startVal[2] <- min(resp3) - 0.001 # the c parameter
# startVal[2] <- mean(resp3[dose2 == min(dose2)]) + (1e-8)*((max(resp3) - min(resp3))/max(resp3))
startVal[5] <- 1 # better choice may be possible!
# startVal[!notFixed] <- fixed[!notFixed]
if (length(unique(dose2))==1) {return((c(NA, NA, startVal[3], NA, NA))[notFixed])} # only estimate of upper limit if a single unique dose value
logitTrans <- log((startVal[3] - resp3)/(resp3 - startVal[2])) # 0.001 to avoid 0 in the denominator
# print(logitTrans)
logitFit <- lm(logitTrans ~ dose2)
startVal[4] <- -coef(logitFit)[1]/coef(logitFit)[2] # the e parameter
startVal[1] <- coef(logitFit)[2] # the b parameter
return(startVal[notFixed])
}
}
if (!is.null(ssfct))
{
ssfct <- ssfct
} else {
ssfct <- logistic.ssf(method, fixed)
}
## Defining names
names <- names[notFixed]
##Defining the first derivatives (in the parameters)
deriv1 <- function(dose, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow=TRUE)
parmMat[, notFixed] <- parm
t1 <- parmMat[, 3] - parmMat[, 2]
t2 <- exp(parmMat[, 1]*(dose - parmMat[, 4]))
t3 <- (1 + t2)^(2*parmMat[, 5])
t4 <- parmMat[, 5]*((1 + t2)^(-parmMat[, 5] - 1))
t5 <- (1 + t2)^(parmMat[, 5])
cbind( -t1*t2*t4*(dose - parmMat[ , 4]),
1 - 1/t5,
1/t5,
t1*t2*t4*parmMat[, 1],
-t1*log(1+t2)/t5 )[, notFixed]
}
deriv2 <- NULL
##Defining the first derivatives (in x)
derivx <- function(x, parm)
{
parmMat <- matrix(parmVec, nrow(parm), numParm, byrow = TRUE)
parmMat[, notFixed] <- parm
temp1 <- exp(parmMat[, 1]*(x - parmMat[, 4]))
(-parmMat[, 5]*(parmMat[, 3] - parmMat[, 2])*temp1*parmMat[, 1])/((1 + temp1)^(parmMat[, 5] + 1))
}
## Defining the ED function
edfct <- function(parm, p, ...)
{
parmVec[notFixed] <- parm
# if (parmVec[1] > 0)
# {
# tempVal <- (100 - p) / 100
# old=wrong EDp <- parmVec[4] + log( (1 + exp(-parmVec[1]*parmVec[4])) / (tempVal^(1/parmVec[5])) - 1)/parmVec[1]
# old=wrong ## deriv(~e + log( (1 + exp(-b*e)) / (((100 - p) / 100)^(1/f)) - 1)/b, c("b", "c", "d", "e", "f"), function(b,c,d,e,f){})
## deriv(~e + log((100/(100-p))^(1/f) - 1) / b, c("b", "c", "d", "e", "f"), function(b,c,d,e,f){})
## evaluated at the R prompt
EDderFct <-
function (b, c, d, e, f)
{
.expr2 <- 100/p
.expr4 <- .expr2^(1/f)
.expr5 <- .expr4 - 1
.expr6 <- log(.expr5)
.value <- e + .expr6/b
.grad <- array(0, c(length(.value), 5L), list(NULL, c("b", "c", "d", "e", "f")))
.grad[, "b"] <- -(.expr6/b^2)
.grad[, "c"] <- 0
.grad[, "d"] <- 0
.grad[, "e"] <- 1
.grad[, "f"] <- -(.expr4 * (log(.expr2) * (1/f^2))/.expr5/b)
attr(.value, "gradient") <- .grad
.value
}
EDcalc <- EDderFct(parmVec[1], parmVec[2], parmVec[3], parmVec[4], parmVec[5])
EDp <- as.numeric(EDcalc)
EDder <- attr(EDcalc, "gradient")
# old = wrong
# function (b, c, d, e, f)
# {
# .expr3 <- exp(-b * e)
# .expr4 <- 1 + .expr3
# .expr6 <- (100 - p)/100
# .expr8 <- .expr6^(1/f)
# .expr10 <- .expr4/.expr8 - 1
# .expr11 <- log(.expr10)
# .value <- e + .expr11/b
# .grad <- array(0, c(length(.value), 5L), list(NULL, c("b", "c", "d", "e", "f")))
# .grad[, "b"] <- -(.expr3 * e/.expr8/.expr10/b + .expr11/b^2)
# .grad[, "c"] <- 0
# .grad[, "d"] <- 0
# .grad[, "e"] <- 1 - .expr3 * b/.expr8/.expr10/b
# .grad[, "f"] <- .expr4 * (.expr8 * (log(.expr6) * (1/f^2)))/.expr8^2/.expr10/b
# attr(.value, "gradient") <- .grad
# .value
# }
# EDder <- attr(EDderFct(parmVec[1], parmVec[2], parmVec[3], parmVec[4], parmVec[5]), "gradient")
# } else {
# tempVal1 <- p / 100
# tempVal2 <- (1 / (tempVal1 / ((1 + exp(-parmVec[1]*parmVec[4]))^parmVec[5]) + 1 - tempVal1))^(1/parmVec[5])
# EDp <- parmVec[4] + log(tempVal2 - 1) / parmVec[1]
# EDder <- NULL
# }
# tempVal <- -log((100-p)/100)
# EDp <- parmVec[4] + log(exp(tempVal/parmVec[5])-1)/parmVec[1]
#
# EDder <- c(-log(exp(tempVal/parmVec[5])-1)/(parmVec[1]^2),
# 0,
# 0,
# 1,
# -exp(tempVal/parmVec[5])*tempVal/(parmVec[5]^2)*(1/parmVec[1])*((exp(tempVal/parmVec[5])-1)^(-1)))
#
return(list(EDp, EDder[notFixed]))
}
# ## Defining the SI function
# sifct <- function(parm1, parm2, pair)
# {
# ED1 <- edfct(parm1, pair[1])
# ED2 <- edfct(parm2, pair[2])
# SIpair <- ED1[[1]] - ED2[[1]] # SI value on log scale
# SIder1 <- ED1[[2]]
# SIder2 <- ED2[[2]]
#
## SIpair <- ED1[[1]]/ED2[[1]] # calculating the SI value
## SIder1 <- ED1[[2]]/ED1[[1]]*SIpair
## SIder2 <- ED2[[2]]/ED2[[1]]*SIpair
#
# return(list(SIpair, SIder1, SIder2))
# }
## Defining the inverse function
invfct <- function(y, parm)
{
parmVec[notFixed] <- parm
log(((parmVec[3] - parmVec[2])/(y - parmVec[2]))^(1/parmVec[5]) - 1)/parmVec[1] + parmVec[4]
}
## Defining return list
returnList <- list(fct = fct, ssfct = ssfct, names = names,
deriv1 = deriv1, deriv2 = deriv2, derivx = derivx, edfct = edfct,
inversion = invfct,
name = ifelse(missing(fctName), as.character(match.call()[[1]]), fctName),
text = ifelse(missing(fctText), "Logistic (ED50 as parameter)", fctText),
noParm = sum(is.na(fixed)), fixed = fixed)
class(returnList) <- "Boltzmann"
invisible(returnList)
}
#"boltzmann" <- logistic
"L.3" <-
function(fixed = c(NA, NA, NA), names = c("b", "d", "e"), ...)
{
## Checking arguments
numParm <- 3
if (!is.character(names) | !(length(names)==numParm)) {stop("Not correct names argument")}
if (!(length(fixed)==numParm)) {stop("Not correct length of 'fixed' argument")}
return(logistic(fixed = c(fixed[1], 0, fixed[2:3], 1), names = c(names[1], "c", names[2:3], "f"),
fctName = as.character(match.call()[[1]]),
fctText = "Logistic (ED50 as parameter) with lower limit fixed at 0", ...))
}
#b3 <- B.3
#L.3 <- B.3
"L.4" <-
function(fixed = c(NA, NA, NA, NA), names = c("b", "c", "d", "e"), ...)
{
## Checking arguments
numParm <- 4
if (!is.character(names) | !(length(names)==numParm)) {stop("Not correct names argument")}
if (!(length(fixed)==numParm)) {stop("Not correct length of 'fixed' argument")}
return(logistic(fixed = c(fixed, 1), names = c(names, "f"),
fctName = as.character(match.call()[[1]]),
fctText = "Logistic (ED50 as parameter)", ...))
}
#b4 <- B.4
#L.4 <- B.4
"L.5" <-
function(fixed = c(NA, NA, NA, NA, NA), names = c("b", "c", "d", "e", "f"), ...)
{
return(logistic(fixed = fixed, names = names,
fctName = as.character(match.call()[[1]]),
fctText = "Generalised logistic (ED50 as parameter)", ...))
}
#b5 <- B.5
#L.5 <- B.5
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.