Nothing
`LRtest.Rm` <-
function(object, splitcr = "median", se = TRUE)
{
# performs Andersen LR-test
# object... object of class RM
# splitcr... splitting criterion for LR-groups. "all.r" corresponds to a complete
# raw score split (r=1,...,k-1), "median" to a median raw score split,
# "mean" corresponds to the mean raw score split.
# optionally also a vector of length n for group split can be submitted.
# se...whether standard errors should be computed
call<-match.call()
spl.gr<-NULL
X.original<-object$X
if((length(splitcr) > 1) & is.character(splitcr)){ # if splitcr is character vector, treated as factor
splitcr<-as.factor(splitcr)
}
if(is.factor(splitcr)){
spl.nam<-deparse(substitute(splitcr))
spl.lev<-levels(splitcr)
spl.gr<-paste(spl.nam,spl.lev,sep=" ")
splitcr<-unclass(splitcr)
}
numsplit<-is.numeric(splitcr)
if (any(is.na(object$X))) {
if (!numsplit && splitcr=="mean") { #mean split
spl.gr<-c("Raw Scores < Mean", "Raw Scores >= Mean")
X<-object$X
# calculates index for NA groups
# from person.parameter.eRm
dichX <- ifelse(is.na(X),1,0)
strdata <- apply(dichX,1,function(x) {paste(x,collapse="")})
gmemb <- as.vector(data.matrix(data.frame(strdata)))
gindx<-unique(gmemb)
rsum.all<-rowSums(X,na.rm=T)
grmeans<-tapply(rsum.all,gmemb,mean) #sorted
ngr<-table(gmemb) #sorted
m.all<-rep(grmeans,ngr) #sorted,expanded
rsum.all<-rsum.all[order(gmemb)]
spl<-ifelse(rsum.all<m.all,1,2)
splitcr<-spl
object$X<-X[order(gmemb),]
}
if (!numsplit && splitcr=="median") { #median split
spl.gr<-c("Raw Scores <= Median", "Raw Scores > Median")
# cat("Warning message: Persons with median raw scores are assigned to the lower raw score group!\n")
X<-object$X
# calculates index for NA groups
# from person.parameter.eRm
dichX <- ifelse(is.na(X),1,0)
strdata <- apply(dichX,1,function(x) {paste(x,collapse="")})
gmemb <- as.vector(data.matrix(data.frame(strdata)))
gindx<-unique(gmemb)
rsum.all<-rowSums(X,na.rm=T)
grmed<-tapply(rsum.all,gmemb,median) #sorted
ngr<-table(gmemb) #sorted
m.all<-rep(grmed,ngr) #sorted,expanded
rsum.all<-rsum.all[order(gmemb)]
spl<-ifelse(rsum.all<=m.all,1,2)
splitcr<-spl
object$X<-X[order(gmemb),]
}
}
if (!is.numeric(splitcr)) {
if (splitcr=="all.r") { #full raw score split ### begin MjM 2012-03-18
rvind <- rowSums(object$X, na.rm=TRUE) #person raw scoobject
excl_0_k <- (rvind > 0) & (rvind < sum(apply(object$X, 2, max, na.rm=T)))
Xlist <- by(object$X[excl_0_k,], rvind[excl_0_k], function(x) x)
names(Xlist) <- as.list(paste("Raw Score =", sort(unique(rvind[excl_0_k]))))
spl.gr <- unlist(names(Xlist))
} ### end MjM 2012-03-18
if (splitcr=="median") { #median split
spl.gr<-c("Raw Scores <= Median", "Raw Scores > Median")
#removed rh 2010-12-17
#cat("Warning message: Persons with median raw scores are assigned to the lower raw score group!\n")
rv <- apply(object$X,1,sum,na.rm=TRUE)
rvsplit <- median(rv)
rvind <- rep(0,length(rv))
rvind[rv > rvsplit] <- 1 #group with highraw scoobject
Xlist <- by(object$X,rvind,function(x) x)
names(Xlist) <- list("low","high")
}
if (splitcr=="mean") { #mean split
spl.gr<-c("Raw Scores < Mean", "Raw Scores >= Mean")
rv <- apply(object$X,1,sum,na.rm=TRUE)
rvsplit <- mean(rv)
rvind <- rep(0,length(rv))
rvind[rv > rvsplit] <- 1 #group with highraw scoobject
Xlist <- by(object$X,rvind,function(x) x)
names(Xlist) <- list("low","high")
}
}
if (is.numeric(splitcr)) { #manual raw score split
spl.nam<-deparse(substitute(splitcr))
if (length(splitcr)!=dim(object$X)[1]) stop("Mismatch between length of split vector and number of persons!")
if (any(is.na(splitcr))) stop("Split vector should not contain NA's")
rvind <- splitcr
Xlist <- by(object$X,rvind, function(x) x)
names(Xlist) <- as.list(sort(unique(splitcr)))
if(is.null(spl.gr)){
spl.lev<-names(Xlist)
spl.gr<-paste(spl.nam,spl.lev,sep=" ")
}
}
#----------item to be deleted---------------
del.pos.l <- lapply(Xlist, function(x) {
it.sub <- datcheck.LRtest(x,object$X,object$model) #items to be removed within subgroup
})
del.pos <- unique(unlist(del.pos.l))
if (length(del.pos) >= (ncol(object$X)-1)) {
stop("\nNo items with appropriate response patterns left to perform LR-test!\n")
}
if(length(del.pos) > 0){ ### begin MjM 2013-01-27
warning(paste0(
"\n",
prettyPaste("The following items were excluded due to inappropriate response patterns within subgroups:"),
"\n",
paste(colnames(object$X)[del.pos], collapse=" "),
"\n\n",
prettyPaste("Full and subgroup models are estimated without these items!")
), immediate.=TRUE)
} ### end MjM 2013-01-27
if (length(del.pos) > 0) {
X.el <- object$X[,-(del.pos)]
} else {
X.el <- object$X
}
if(ifelse(length(splitcr) == 1, splitcr != "all.r", TRUE)){ ### begin MjM 2012-03-18 # for all cases except "all.r"
Xlist.n <- by(X.el, rvind, function(y) y)
names(Xlist.n) <- names(Xlist)
if (length(del.pos) > 0) Xlist.n <- c(Xlist.n,list(X.el)) # X.el added since we must refit whole group without del.pos items
} else {
Xlist.n <- by(X.el[excl_0_k,], rvind[excl_0_k], function(y) y)
names(Xlist.n) <- names(Xlist)
Xlist.n <- c(Xlist.n,list(X.el[excl_0_k,])) # X.el added since we must refit whole group without del.pos items
} ### end MjM 2012-03-18
if (object$model=="RM") {
likpar <- sapply(Xlist.n,function(x) { #matrix with loglik and npar for each subgroup
objectg <- RM(x,se=se)
likg <- objectg$loglik
nparg <- length(objectg$etapar)
# betalab <- colnames(objectg$X)
list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta,outobj=objectg) # rh outobj added
###list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta) # rh outobj added
})
}
if (object$model=="PCM") {
likpar <- sapply(Xlist.n,function(x) { #matrix with loglik and npar for each subgroup
objectg <- PCM(x,se=se)
likg <- objectg$loglik
nparg <- length(objectg$etapar)
list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta,outobj=objectg) # rh outobj added
###list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta) # rh outobj added
})
}
if (object$model=="RSM") {
likpar <- sapply(Xlist.n,function(x) { #matrix with loglik and npar for each subgroup
objectg <- RSM(x,se=se)
likg <- objectg$loglik
nparg <- length(objectg$etapar)
list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta,outobj=objectg) # rh outobj added
###list(likg,nparg,objectg$betapar,objectg$etapar,objectg$se.beta) # rh outobj added
})
}
## extract fitted splitgroup models # rh 02-05-2010
if(ifelse(length(splitcr) == 1, splitcr != "all.r", TRUE)){ ### begin MjM 2012-03-18
fitobj <- likpar[6, 1:length(unique(rvind))]
} else {
fitobj <- likpar[6, 1:length(unique(rvind[excl_0_k]))]
} ### end MjM 2012-03-18
likpar <- likpar[-6,]
if((length(del.pos) > 0) | ifelse(length(splitcr) == 1, splitcr == "all.r", FALSE)) { #re-estimate full model ### MjM 2012-03-18
pos <- length(Xlist.n) #position of the full model
loglik.all <- likpar[1,pos][[1]] #loglik full model
# etapar.all <- rep(0,likpar[2,pos]) #etapar full model (filled with 0 for df computation)
etapar.all <- rep(0, unlist(likpar[2,pos])) #etapar full model (filled with 0 for df computation)
likpar <- likpar[,-pos]
Xlist.n <- Xlist.n[-pos]
} else {
loglik.all <- object$loglik
etapar.all <- object$etapar
}
loglikg <- sum(unlist(likpar[1,])) #sum of likelihood value for subgroups
LR <- 2*(abs(loglikg-loglik.all)) #LR value
df = sum(unlist(likpar[2,]))-(length(etapar.all)) #final degrees of freedom
pvalue <- 1 - pchisq(LR, df) #pvalue
betalist <- likpar[3,] #organizing betalist
result <- list(X=X.original, X.list=Xlist.n, model=object$model,LR=LR,
df=df, pvalue=pvalue, likgroup=unlist(likpar[1,],use.names=FALSE),
betalist=betalist, etalist=likpar[4,],selist=likpar[5,], spl.gr=spl.gr, call=call, fitobj=fitobj) ## rh fitobj added
class(result) <- "LR"
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.