Nothing
#' Probabilistic sensitivity analysis for unmeasured confounding of person-time data and random error.
#'
#' Probabilistic sensitivity analysis to correct for unmeasured confounding when person-time data has been collected.
#'
#' @param counts A table or matrix where first row contains disease counts and second row contains person-time at risk, and first and second columns are exposed and unexposed observations, as:
#' \tabular{lll}{
#' \tab Exposed \tab Unexposed \cr
#' Cases \tab a \tab b \cr
#' Person-time \tab N1 \tab N0
#' }
#' @param pt A numeric vector of person-time at risk. If provided, \code{counts} must be a numeric vector of disease counts.
#' @param reps Number of replications to run.
#' @param prev.exp List defining the prevalence of exposure among the exposed. The first argument provides the probability distribution function (constant,uniform, triangular, trapezoidal, logit-logistic, logit-normal, or beta) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.
#' \enumerate{
#' \item constant; value,
#' \item uniform: min, max,
#' \item triangular: lower limit, upper limit, mode,
#' \item trapezoidal: min, lower mode, upper mode, max.
#' \item logit-logistic: location, scale, lower bound shift, upper bound shift,
#' \item logit-normal: location, scale, lower bound shift, upper bound shift,
#' \item beta: alpha, beta.
#' }
#' @param prev.nexp List defining the prevalence of exposure among the unexposed.
#' @param risk List defining the confounder-disease relative risk or the confounder-exposure odds ratio. The first argument provides the probability distribution function (constant,uniform, triangular, trapezoidal, log-logistic, or log-normal) and the second its parameters as a vector:
#' \enumerate{
#' \item constant: value,
#' \item uniform: min, max,
#' \item triangular: lower limit, upper limit, mode,
#' \item trapezoidal: min, lower mode, upper mode, max.
#' \item log-logistic: shape, rate. Must be strictly positive,
#' \item log-normal: meanlog, sdlog. This is the mean and standard deviation on the log scale.
#' }
#' @param corr.p Correlation between the exposure-specific confounder prevalences.
#' @param discard A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero.
#' @param alpha Significance level.
#'
#' @return A list with elements:
#' \item{obs.data}{The analyzed 2 x 2 table from the observed data.}
#' \item{obs.measures}{A table of observed incidence rate ratio with exact confidence interval.}
#' \item{adj.measures}{A table of corrected incidence rate ratios.}
#' \item{sim.df}{Data frame of random parameters and computed values.}
#'
#' @references Lash, T.L., Fox, M.P, Fink, A.K., 2009 \emph{Applying Quantitative
#' Bias Analysis to Epidemiologic Data}, pp.117--150, Springer.
#' @examples
#' set.seed(123)
#' # Unmeasured confounding
#' probsens.irr.conf(matrix(c(77, 10000, 87, 10000),
#' dimnames = list(c("D+", "Person-time"), c("E+", "E-")), ncol = 2),
#' reps = 20000,
#' prev.exp = list("trapezoidal", c(.01, .2, .3, .51)),
#' prev.nexp = list("trapezoidal", c(.09, .27, .35, .59)),
#' risk = list("trapezoidal", c(2, 2.5, 3.5, 4.5)),
#' corr.p = .8)
#' @export
#' @importFrom stats binom.test median quantile runif rbeta qbeta
probsens.irr.conf <- function(counts,
pt = NULL,
reps = 1000,
prev.exp = list(dist = c("constant", "uniform",
"triangular", "trapezoidal",
"logit-logistic", "logit-normal", "beta"),
parms = NULL),
prev.nexp = list(dist = c("constant", "uniform",
"triangular", "trapezoidal",
"logit-logistic", "logit-normal", "beta"),
parms = NULL),
risk = list(dist = c("constant", "uniform", "triangular",
"trapezoidal", "log-logistic",
"log-normal"),
parms = NULL),
corr.p = NULL,
discard = TRUE,
alpha = 0.05){
if(reps < 1)
stop(paste("Invalid argument: reps = ", reps))
if(is.null(prev.exp) | is.null(prev.nexp))
stop('Please provide prevalences among the exposed and unexposed.')
if(is.null(risk))
stop('Please provide risk of acquiring outcome.')
if(!is.list(prev.exp))
stop('Prevalence of exposure among the exposed should be a list.')
else prev.exp <- prev.exp
if((length(prev.exp) != 2) | (length(prev.nexp) != 2) | (length(risk) != 2))
stop('Check distribution parameters.')
if((length(prev.exp[[1]]) != 1) | (length(prev.nexp[[1]]) != 1) |
(length(risk[[1]]) != 1))
stop('Which distribution?')
if(!is.null(corr.p) && (prev.exp[[1]] == "constant" | prev.nexp[[1]] == "constant"))
stop('No correlated distributions with constant values.')
if(prev.exp[[1]] == "constant" & length(prev.exp[[2]]) != 1)
stop('For constant value, please provide a single value.')
if(prev.exp[[1]] == "uniform" & length(prev.exp[[2]]) != 2)
stop('For uniform distribution, please provide vector of lower and upper limits.')
if(prev.exp[[1]] == "uniform" & prev.exp[[2]][1] >= prev.exp[[2]][2])
stop('Lower limit of your uniform distribution is greater than upper limit.')
if(prev.exp[[1]] == "triangular" & length(prev.exp[[2]]) != 3)
stop('For triangular distribution, please provide vector of lower, upper limits, and mode.')
if(prev.exp[[1]] == "triangular" & ((prev.exp[[2]][1] > prev.exp[[2]][3]) |
(prev.exp[[2]][2] < prev.exp[[2]][3])))
stop('Wrong arguments for your triangular distribution.')
if(prev.exp[[1]] == "trapezoidal" & length(prev.exp[[2]]) != 4)
stop('For trapezoidal distribution, please provide vector of lower limit, lower mode, upper mode, and upper limit.')
if(prev.exp[[1]] == "trapezoidal" & ((prev.exp[[2]][1] > prev.exp[[2]][2]) |
(prev.exp[[2]][2] > prev.exp[[2]][3]) |
(prev.exp[[2]][3] > prev.exp[[2]][4])))
stop('Wrong arguments for your trapezoidal distribution.')
if(prev.exp[[1]] == "logit-logistic" & (length(prev.exp[[2]]) < 2 | length(prev.exp[[2]]) == 3 | length(prev.exp[[2]]) > 4))
stop('For logit-logistic distribution, please provide vector of location, scale, and eventually lower and upper bound limits if you want to shift and rescale the distribution.')
if(prev.exp[[1]] == "logit-logistic" & length(prev.exp[[2]]) == 4 &
((prev.exp[[2]][3] >= prev.exp[[2]][4]) | (!all(prev.exp[[2]][3:4] >= 0 & prev.exp[[2]][3:4] <= 1))))
stop('For logit-logistic distribution, please provide sensible values for lower and upper bound limits (between 0 and 1; lower limit < upper limit).')
if(prev.exp[[1]] == "logit-logistic" & length(prev.exp[[2]]) == 2)
prev.exp <- list(prev.exp[[1]], c(prev.exp[[2]], c(0, 1)))
if(prev.exp[[1]] == "logit-normal" & (length(prev.exp[[2]]) < 2 | length(prev.exp[[2]]) == 3 | length(prev.exp[[2]]) > 4))
stop('For logit-normal distribution, please provide vector of location, scale, and eventually lower and upper bound limits if you want to shift and rescale the distribution.')
if(prev.exp[[1]] == "logit-normal" & length(prev.exp[[2]]) == 4 &
((prev.exp[[2]][3] >= prev.exp[[2]][4]) | (!all(prev.exp[[2]][3:4] >= 0 & prev.exp[[2]][3:4] <= 1))))
stop('For logit-normal distribution, please provide sensible values for lower and upper bound limits (between 0 and 1; lower limit < upper limit).')
if(prev.exp[[1]] == "logit-normal" & length(prev.exp[[2]]) == 2)
prev.exp <- list(prev.exp[[1]], c(prev.exp[[2]], c(0, 1)))
if((prev.exp[[1]] == "constant" | prev.exp[[1]] == "uniform" | prev.exp[[1]] == "triangular" | prev.exp[[1]] == "trapezoidal") & !all(prev.exp[[2]] >= 0 & prev.exp[[2]] <= 1))
stop('Prevalence should be between 0 and 1.')
if(!is.null(prev.exp) && prev.exp[[1]] == "beta" && length(prev.exp[[2]]) != 2)
stop('For beta distribution, please provide alpha and beta.')
if(!is.null(prev.exp) && prev.exp[[1]] == "beta" &&
(prev.exp[[2]][1] < 0 | prev.exp[[2]][2] < 0))
stop('Wrong arguments for your beta distribution. Alpha and Beta should be > 0.')
if(!is.list(prev.nexp))
stop('Prevalence of exposure among the non-exposed should be a list.')
else prev.nexp <- prev.nexp
if(prev.nexp[[1]] == "constant" & length(prev.nexp[[2]]) != 1)
stop('For constant value, please provide a single value.')
if(prev.nexp[[1]] == "uniform" & length(prev.nexp[[2]]) != 2)
stop('For uniform distribution, please provide vector of lower and upper limits.')
if(prev.nexp[[1]] == "uniform" & prev.nexp[[2]][1] >= prev.nexp[[2]][2])
stop('Lower limit of your uniform distribution is greater than upper limit.')
if(prev.nexp[[1]] == "triangular" & length(prev.nexp[[2]]) != 3)
stop('For triangular distribution, please provide vector of lower, upper limits, and mode.')
if(prev.nexp[[1]] == "triangular" & ((prev.nexp[[2]][1] > prev.nexp[[2]][3]) |
(prev.nexp[[2]][2] < prev.nexp[[2]][3])))
stop('Wrong arguments for your triangular distribution.')
if(prev.nexp[[1]] == "trapezoidal" & length(prev.nexp[[2]]) != 4)
stop('For trapezoidal distribution, please provide vector of lower limit, lower mode, upper mode, and upper limit.')
if(prev.nexp[[1]] == "trapezoidal" & ((prev.nexp[[2]][1] > prev.nexp[[2]][2]) |
(prev.nexp[[2]][2] > prev.nexp[[2]][3]) |
(prev.nexp[[2]][3] > prev.nexp[[2]][4])))
stop('Wrong arguments for your trapezoidal distribution.')
if(prev.nexp[[1]] == "logit-logistic" & (length(prev.nexp[[2]]) < 2 | length(prev.nexp[[2]]) == 3 | length(prev.nexp[[2]]) > 4))
stop('For logit-logistic distribution, please provide vector of location, scale, and eventually lower and upper bound limits if you want to shift and rescale the distribution.')
if(prev.nexp[[1]] == "logit-logistic" & length(prev.nexp[[2]]) == 4 &
((prev.nexp[[2]][3] >= prev.nexp[[2]][4]) | (!all(prev.nexp[[2]][3:4] >= 0 & prev.nexp[[2]][3:4] <= 1))))
stop('For logit-logistic distribution, please provide sensible values for lower and upper bound limits (between 0 and 1; lower limit < upper limit).')
if(prev.nexp[[1]] == "logit-logistic" & length(prev.nexp[[2]]) == 2)
prev.nexp <- list(prev.nexp[[1]], c(prev.nexp[[2]], c(0, 1)))
if(prev.nexp[[1]] == "logit-normal" & (length(prev.nexp[[2]]) < 2 | length(prev.nexp[[2]]) == 3 | length(prev.nexp[[2]]) > 4))
stop('For logit-normal distribution, please provide vector of location, scale, and eventually lower and upper bound limits if you want to shift and rescale the distribution.')
if(prev.nexp[[1]] == "logit-normal" & length(prev.nexp[[2]]) == 4 &
((prev.nexp[[2]][3] >= prev.nexp[[2]][4]) | (!all(prev.nexp[[2]][3:4] >= 0 & prev.nexp[[2]][3:4] <= 1))))
stop('For logit-normal distribution, please provide sensible values for lower and upper bound limits (between 0 and 1; lower limit < upper limit).')
if(prev.nexp[[1]] == "logit-normal" & length(prev.nexp[[2]]) == 2)
prev.nexp <- list(prev.nexp[[1]], c(prev.nexp[[2]], c(0, 1)))
if((prev.nexp[[1]] == "constant" | prev.nexp[[1]] == "uniform" | prev.nexp[[1]] == "triangular" | prev.nexp[[1]] == "trapezoidal") & !all(prev.nexp[[2]] >= 0 & prev.nexp[[2]] <= 1))
stop('Prevalence should be between 0 and 1.')
if(!is.null(prev.nexp) && prev.nexp[[1]] == "beta" && length(prev.nexp[[2]]) != 2)
stop('For beta distribution, please provide alpha and beta.')
if(!is.null(prev.nexp) && prev.nexp[[1]] == "beta" &&
(prev.nexp[[2]][1] < 0 | prev.nexp[[2]][2] < 0))
stop('Wrong arguments for your beta distribution. Alpha and Beta should be > 0.')
if(!is.list(risk))
stop('Risk should be a list.')
else risk <- risk
if(risk[[1]] == "constant" & length(risk[[2]]) != 1)
stop('For constant value, please provide a single value.')
if(risk[[1]] == "uniform" & length(risk[[2]]) != 2)
stop('For uniform distribution, please provide vector of lower and upper limits.')
if(risk[[1]] == "uniform" & risk[[2]][1] >= risk[[2]][2])
stop('Lower limit of your uniform distribution is greater than upper limit.')
if(risk[[1]] == "triangular" & length(risk[[2]]) != 3)
stop('For triangular distribution, please provide vector of lower, upper limits, and mode.')
if(risk[[1]] == "triangular" & ((risk[[2]][1] > risk[[2]][3]) |
(risk[[2]][2] < risk[[2]][3])))
stop('Wrong arguments for your triangular distribution.')
if(risk[[1]] == "trapezoidal" & length(risk[[2]]) != 4)
stop('For trapezoidal distribution, please provide vector of lower limit, lower mode, upper mode, and upper limit.')
if(risk[[1]] == "trapezoidal" & ((risk[[2]][1] > risk[[2]][2]) |
(risk[[2]][2] > risk[[2]][3]) |
(risk[[2]][3] > risk[[2]][4])))
stop('Wrong arguments for your trapezoidal distribution.')
if(risk[[1]] == "log-logistic" & length(risk[[2]]) != 2)
stop('For log-logistic distribution, please provide vector of location and scale.')
if(risk[[1]] == "log-normal" & length(risk[[2]]) != 2)
stop('For log-logistic distribution, please provide vector of meanlog and sdlog.')
if(!is.null(corr.p) && (corr.p == 0 | corr.p == 1))
stop('Correlations should be > 0 and < 1.')
if(!is.null(pt) && inherits(counts, c("table", "matrix")))
stop("pt argument should be NULL.")
if(!inherits(counts, c("vector", "table", "matrix")))
stop("counts argument should be a vector, a table, or a matrix.")
if(is.null(pt) && inherits(counts, c("table", "matrix")))
tab <- counts
else tab <- rbind(counts, pt)
a <- as.numeric(tab[1, 1])
b <- as.numeric(tab[1, 2])
c <- as.numeric(tab[2, 1])
d <- as.numeric(tab[2, 2])
draws <- matrix(NA, nrow = reps, ncol = 14)
colnames(draws) <- c("p1", "p0", "RR.cd",
"M1", "N1", "A1", "B1",
"M0", "N0", "A0", "B0",
"corr.IRR", "reps", "tot.IRR")
corr.draws <- matrix(NA, nrow = reps, ncol = 5)
p1 <- c(reps, prev.exp[[2]])
p0 <- c(reps, prev.nexp[[2]])
rr.cd <- c(reps, risk[[2]])
obs.irr <- (a / c) / (b / d)
lci.obs.irr <- (binom.test(a, a + b, conf.level = 1 - alpha)$conf.int[1] * d) /
((1 - binom.test(a, a + b, conf.level = 1 - alpha)$conf.int[1]) * c)
uci.obs.irr <- (binom.test(a, a + b, conf.level = 1 - alpha)$conf.int[2] * d) /
((1 - binom.test(a, a + b, conf.level = 1 - alpha)$conf.int[2]) * c)
if (is.null(corr.p)) {
if (prev.exp[[1]] == "constant") {
draws[, 1] <- prev.exp[[2]]
}
if (prev.exp[[1]] == "uniform") {
draws[, 1] <- do.call(runif, as.list(p1))
}
if (prev.exp[[1]] == "triangular") {
draws[, 1] <- do.call(triangle::rtriangle, as.list(p1))
}
if (prev.exp[[1]] == "trapezoidal") {
draws[, 1] <- do.call(trapezoid::rtrapezoid, as.list(p1))
}
if (prev.exp[[1]] == "logit-logistic") {
draws[, 1] <- logitlog.dstr(p1)
}
if (prev.exp[[1]] == "logit-normal") {
draws[, 1] <- logitnorm.dstr(p1)
}
if (prev.exp[[1]] == "beta") {
draws[, 1] <- do.call(rbeta, as.list(p1))
}
if (prev.nexp[[1]] == "constant") {
draws[, 2] <- prev.nexp[[2]]
}
if (prev.nexp[[1]] == "uniform") {
draws[, 2] <- do.call(runif, as.list(p0))
}
if (prev.nexp[[1]] == "triangular") {
draws[, 2] <- do.call(triangle::rtriangle, as.list(p0))
}
if (prev.nexp[[1]] == "trapezoidal") {
draws[, 2] <- do.call(trapezoid::rtrapezoid, as.list(p0))
}
if (prev.nexp[[1]] == "logit-logistic") {
draws[, 2] <- logitlog.dstr(p0)
}
if (prev.nexp[[1]] == "logit-normal") {
draws[, 2] <- logitnorm.dstr(p0)
}
if (prev.nexp[[1]] == "beta") {
draws[, 2] <- do.call(rbeta, as.list(p0))
}
} else {
corr.draws[, 1:3] <- apply(corr.draws[, 1:3],
2,
function(x) x = runif(reps))
corr.draws[, 1:3] <- apply(corr.draws[, 1:3],
2,
function(x) log(x / (1 - x)))
corr.draws[, 4] <- exp(sqrt(corr.p) * corr.draws[, 1] + sqrt(1 - corr.p) * corr.draws[, 2]) /
(1 + (exp(sqrt(corr.p) * corr.draws[, 1] + sqrt(1 - corr.p) * corr.draws[, 2])))
corr.draws[, 5] <- exp(sqrt(corr.p) * corr.draws[, 1] + sqrt(1 - corr.p) * corr.draws[, 3]) /
(1 + (exp(sqrt(corr.p) * corr.draws[, 1] + sqrt(1 - corr.p) * corr.draws[, 3])))
if (prev.exp[[1]] == "uniform") {
draws[, 1] <- prev.exp[[2]][2] -
(prev.exp[[2]][2] - prev.exp[[2]][1]) * corr.draws[, 4]
}
if (prev.exp[[1]] == "triangular") {
draws[, 1] <- (corr.draws[, 4] *
(prev.exp[[2]][2] - prev.exp[[2]][1]) + (prev.exp[[2]][1] + prev.exp[[2]][3])) / 2
draws[, 1] <- ifelse(draws[, 1] < prev.exp[[2]][3],
prev.exp[[2]][1] + sqrt(abs((prev.exp[[2]][3] - prev.exp[[2]][1]) * (2 * draws[, 1] - prev.exp[[2]][1] - prev.exp[[2]][3]))),
draws[, 1])
draws[, 1] <- ifelse(draws[, 1] > prev.exp[[2]][3],
prev.exp[[2]][2] - sqrt(abs(2 * (prev.exp[[2]][2] - prev.exp[[2]][3]) * (draws[, 1] - prev.exp[[2]][3]))),
draws[, 1])
}
if (prev.exp[[1]] == "trapezoidal") {
draws[, 1] <- (corr.draws[, 4] *
(prev.exp[[2]][4] + prev.exp[[2]][3] - prev.exp[[2]][1] - prev.exp[[2]][2]) + (prev.exp[[2]][1] + prev.exp[[2]][2])) / 2
draws[, 1] <- ifelse(draws[, 1] < prev.exp[[2]][2],
prev.exp[[2]][1] + sqrt(abs((prev.exp[[2]][2] - prev.exp[[2]][1]) * (2 * draws[, 1] - prev.exp[[2]][1] - prev.exp[[2]][2]))),
draws[, 1])
draws[, 1] <- ifelse(draws[, 1] > prev.exp[[2]][3],
prev.exp[[2]][4] - sqrt(abs(2 * (prev.exp[[2]][4] - prev.exp[[2]][3]) * (draws[, 1] - prev.exp[[2]][3]))),
draws[, 1])
}
if (prev.exp[[1]] == "logit-logistic") {
pexp.w <- prev.exp[[2]][1] + (prev.exp[[2]][2] * log(corr.draws[, 4] / (1 - corr.draws[, 4])))
draws[, 1] <- prev.exp[[2]][3] + (prev.exp[[2]][4] - prev.exp[[2]][3]) * exp(pexp.w) / (1 + exp(pexp.w))
}
if (prev.exp[[1]] == "logit-normal") {
pexp.w <- prev.exp[[2]][1] + (prev.exp[[2]][2] * qnorm(corr.draws[, 4]))
draws[, 1] <- prev.exp[[2]][3] + (prev.exp[[2]][4] - prev.exp[[2]][3]) * exp(pexp.w) / (1 + exp(pexp.w))
}
if (prev.exp[[1]] == "beta") {
draws[, 1] <- qbeta(corr.draws[, 4]/(1 + corr.draws[, 4]),
prev.exp[[2]][1],
prev.exp[[2]][2])
}
if (prev.nexp[[1]] == "uniform") {
draws[, 2] <- prev.nexp[[2]][2] -
(prev.nexp[[2]][2] - prev.nexp[[2]][1]) * corr.draws[, 5]
}
if (prev.nexp[[1]] == "triangular") {
draws[, 2] <- (corr.draws[, 5] *
(prev.nexp[[2]][2] - prev.nexp[[2]][1]) + (prev.nexp[[2]][1] + prev.nexp[[2]][3])) / 2
draws[, 2] <- ifelse(draws[, 2] < prev.nexp[[2]][3],
prev.nexp[[2]][1] + sqrt(abs((prev.nexp[[2]][3] - prev.nexp[[2]][1]) * (2 * draws[, 2] - prev.nexp[[2]][1] - prev.nexp[[2]][3]))),
draws[, 2])
draws[, 2] <- ifelse(draws[, 2] > prev.nexp[[2]][3],
prev.nexp[[2]][2] - sqrt(abs(2 * (prev.nexp[[2]][2] - prev.nexp[[2]][3]) * (draws[, 2] - prev.nexp[[2]][3]))),
draws[, 2])
}
if (prev.nexp[[1]] == "trapezoidal") {
draws[, 2] <- (corr.draws[, 5] *
(prev.nexp[[2]][4] + prev.nexp[[2]][3] - prev.nexp[[2]][1] - prev.nexp[[2]][2]) + (prev.nexp[[2]][1] + prev.nexp[[2]][2])) / 2
draws[, 2] <- ifelse(draws[, 2] < prev.nexp[[2]][2],
prev.nexp[[2]][1] + sqrt(abs((prev.nexp[[2]][2] - prev.nexp[[2]][1]) * (2 * draws[, 2] - prev.nexp[[2]][1] - prev.nexp[[2]][2]))),
draws[, 2])
draws[, 2] <- ifelse(draws[, 2] > prev.nexp[[2]][3],
prev.nexp[[2]][4] - sqrt(abs(2 * (prev.nexp[[2]][4] - prev.nexp[[2]][3]) * (draws[, 2] - prev.nexp[[2]][3]))),
draws[, 2])
}
if (prev.nexp[[1]] == "logit-logistic") {
punexp.w <- prev.nexp[[2]][1] + (prev.nexp[[2]][2] * log(corr.draws[, 5] / (1 - corr.draws[, 5])))
draws[, 2] <- prev.nexp[[2]][3] + (prev.nexp[[2]][4] - prev.nexp[[2]][3]) * exp(punexp.w) / (1 + exp(punexp.w))
}
if (prev.nexp[[1]] == "logit-normal") {
punexp.w <- prev.nexp[[2]][1] + (prev.nexp[[2]][2] * qnorm(corr.draws[, 5]))
draws[, 2] <- prev.nexp[[2]][3] + (prev.nexp[[2]][4] - prev.nexp[[2]][3]) * exp(punexp.w) / (1 + exp(punexp.w))
}
if (prev.nexp[[1]] == "beta") {
draws[, 2] <- qbeta(corr.draws[, 5]/(1 + corr.draws[, 5]),
prev.nexp[[2]][1],
prev.nexp[[2]][2])
}
}
if(risk[[1]] == "constant") {
draws[, 3] <- risk[[2]]
}
if (risk[[1]] == "uniform") {
draws[, 3] <- do.call(runif, as.list(rr.cd))
}
if (risk[[1]] == "triangular") {
draws[, 3] <- do.call(triangle::rtriangle, as.list(rr.cd))
}
if (risk[[1]] == "trapezoidal") {
draws[, 3] <- do.call(trapezoid::rtrapezoid, as.list(rr.cd))
}
if (risk[[1]] == "log-logistic") {
draws[, 3] <- do.call(actuar::rllogis, as.list(rr.cd))
}
if (risk[[1]] == "log-normal") {
draws[, 3] <- do.call(rlnorm, as.list(rr.cd))
}
draws[, 13] <- runif(reps)
draws[, 4] <- c * draws[, 1]
draws[, 6] <- (draws[, 3] * draws[, 4] * a) /
((draws[, 3] * draws[, 6]) + c - draws[, 6])
draws[, 5] <- d * draws[, 2]
draws[, 7] <- (draws[, 3] * draws[, 5] * b) /
((draws[, 3] * draws[, 5]) + d - draws[, 5])
draws[, 10] <- a - draws[, 6]
draws[, 8] <- c - draws[, 4]
draws[, 11] <- b - draws[, 7]
draws[, 9] <- d - draws[, 5]
draws[, 12] <- a /
((draws[, 4] * draws[, 7] / draws[, 5]) +
(draws[, 8] * draws[, 11] / draws[, 9]))
draws[, 12] <- ifelse(draws[, 4] < 0 |
draws[, 5] < 0 |
draws[, 7] < 0 |
draws[, 8] < 0 |
draws[, 11] < 0, NA, draws[, 12])
if(all(is.na(draws[, 12]))) {
warning('Prior prevalence distributions lead to all negative adjusted values.')
neg_warn <- "Prior Se/Sp distributions lead to all negative adjusted counts."
} else neg_warn <- NULL
if (discard) {
if(sum(is.na(draws[, 12])) > 0) {
message('Chosen prior prevalence distributions lead to ',
sum(is.na(draws[, 12])),
' negative adjusted values which were discarded.')
discard_mess <- c(paste('Chosen prior Se/Sp distributions lead to ',
sum(is.na(draws[, 12])),
' negative adjusted counts which were discarded.'))
} else discard_mess <- NULL
}
else {
if(sum(is.na(draws[, 12])) > 0) {
message('Chosen prior Se/Sp distributions lead to ',
sum(is.na(draws[, 12])),
' negative adjusted counts which were set to zero.')
discard_mess <- c(paste('Chosen prior Se/Sp distributions lead to ',
sum(is.na(draws[, 12])),
' negative adjusted counts which were set to zero.'))
draws[, 12] <- ifelse(is.na(draws[, 12]), 0, draws[, 12])
} else discard_mess <- NULL
}
draws[, 14] <- exp(log(draws[, 12]) -
qnorm(draws[, 13]) *
((log(uci.obs.irr) - log(lci.obs.irr)) /
(qnorm(.975) * 2)))
corr.irr <- c(median(draws[, 12], na.rm = TRUE),
quantile(draws[, 12], probs = .025, na.rm = TRUE),
quantile(draws[, 12], probs = .975, na.rm = TRUE))
tot.irr <- c(median(draws[, 14], na.rm = TRUE),
quantile(draws[, 14], probs = .025, na.rm = TRUE),
quantile(draws[, 14], probs = .975, na.rm = TRUE))
if (is.null(rownames(tab)))
rownames(tab) <- c("Cases", "Person-time")
if (is.null(colnames(tab)))
colnames(tab) <- c("Exposed", "Unexposed")
rmat <- matrix(c(obs.irr, lci.obs.irr, uci.obs.irr), nrow = 1)
rownames(rmat) <- " Observed Incidence Rate ratio:"
colnames(rmat) <- c(" ",
paste(100 * (alpha/2), "%", sep = ""),
paste(100 * (1 - alpha/2), "%", sep = ""))
rmatc <- rbind(corr.irr, tot.irr)
rownames(rmatc) <- c(" Incidence Rate Ratio -- systematic error:",
"Incidence Rate Ratio -- systematic and random error:")
colnames(rmatc) <- c("Median", "2.5th percentile", "97.5th percentile")
res <- list(obs.data = tab,
obs.measures = rmat,
adj.measures = rmatc,
sim.df = as.data.frame(draws[, -13]),
reps = reps,
fun = "probsens.irr.conf",
warnings = neg_warn,
message = discard_mess)
class(res) <- c("episensr", "episensr.probsens", "list")
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.