Nothing
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Beta Distribution ----
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Distribution ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
setClass("Beta",
contains = "Distribution",
slots = c(shape1 = "numeric", shape2 = "numeric", ncp = "numeric"),
prototype = list(shape1 = 1, shape2 = 1, ncp = 0))
#' @title Beta Distribution
#' @name Beta
#'
#' @param x an object of class `Beta`. If the function also has a `distr`
#' argument, `x` is a numeric vector, a sample of observations.
#' @param distr an object of class `Beta`.
#' @param shape1,shape2,ncp numeric. The distribution parameters.
#' @param prm numeric. A vector including the distribution parameters.
#' @param type character, case ignored. The estimator type (mle, me, or same).
#' @param par0,method,lower,upper arguments passed to optim.
#'
#' @inherit Distributions return
#'
#' @export
Beta <- function(shape1 = 1, shape2 = 1, ncp = 0) {
new("Beta", shape1 = shape1, shape2 = shape2, ncp = ncp)
}
setValidity("Beta", function(object) {
if(length(object@shape1) != 1) {
stop("shape1 has to be a numeric of length 1")
}
if(object@shape1 <= 0) {
stop("shape1 has to be positive")
}
if(length(object@shape2) != 1) {
stop("shape2 has to be a numeric of length 1")
}
if(object@shape2 <= 0) {
stop("shape2 has to be positive")
}
if(length(object@ncp) != 1) {
stop("ncp has to be a numeric of length 1")
}
TRUE
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## d, p, q, r ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Beta
#' @export
setMethod("d", signature = c(x = "Beta"),
function(x) {
function(y, log = FALSE) {
dbeta(y, shape1 = x@shape1, shape2 = x@shape2, ncp = x@ncp,
log = log)
}
})
#' @rdname Beta
#' @export
setMethod("p", signature = c(x = "Beta"),
function(x) {
function(q, lower.tail = TRUE, log.p = FALSE) {
pbeta(q, shape1 = x@shape1, shape2 = x@shape2, ncp = x@ncp,
lower.tail = lower.tail, log.p = log.p)
}
})
#' @rdname Beta
#' @export
setMethod("qn", signature = c(x = "Beta"),
function(x) {
function(p, lower.tail = TRUE, log.p = FALSE) {
qbeta(p, shape1 = x@shape1, shape2 = x@shape2, ncp = x@ncp,
lower.tail = lower.tail, log.p = log.p)
}
})
#' @rdname Beta
#' @export
setMethod("r", signature = c(x = "Beta"),
function(x) {
function(n) {
rbeta(n, shape1 = x@shape1, shape2 = x@shape2, ncp = x@ncp)
}
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Moments ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Beta
#' @export
setMethod("mean",
signature = c(x = "Beta"),
definition = function(x) {
x@shape1 / (x@shape1 + x@shape2)
})
#' @rdname Beta
#' @export
setMethod("median",
signature = c(x = "Beta"),
definition = function(x) {
qbeta(0.5, shape1 = x@shape1, shape2 = x@shape2)
})
#' @rdname Beta
#' @export
setMethod("mode",
signature = c(x = "Beta"),
definition = function(x) {
a <- x@shape1
b <- x@shape2
if (a > 1 && b > 1) {
return((a - 1) / (a + b - 2))
} else if (a == 1 && b == 1) {
warning("In Beta(1, 1), all elements in the [0, 1] interval are modes.
0.5 is returned by default.")
return(0.5)
} else if (a < 1 && b < 1) {
warning("In Beta(a, b) with a < 1 and b < 1, both 0 and 1 are modes.
1 is returned by default.")
return(1)
} else if (a <= 1) {
return(0)
} else {
return(1)
}
})
#' @rdname Beta
#' @export
setMethod("var",
signature = c(x = "Beta"),
definition = function(x) {
a <- x@shape1
b <- x@shape2
(a * b) / ((a + b) ^ 2 * (a + b + 1))
})
#' @rdname Beta
#' @export
setMethod("sd",
signature = c(x = "Beta"),
definition = function(x) {
sqrt(var(x))
})
#' @rdname Beta
#' @export
setMethod("skew",
signature = c(x = "Beta"),
definition = function(x) {
a <- x@shape1
b <- x@shape2
(2 * (b - a) * sqrt(a + b + 1)) / ((a + b + 2) * sqrt(a * b))
})
#' @rdname Beta
#' @export
setMethod("kurt",
signature = c(x = "Beta"),
definition = function(x) {
a <- x@shape1
b <- x@shape2
(6 * (a - b) ^ 2 * (a + b + 1) - a * b * (a + b + 2)) /
(a * b * (a + b + 2) * (a + b + 3))
})
#' @rdname Beta
#' @export
setMethod("entro",
signature = c(x = "Beta"),
definition = function(x) {
a <- x@shape1
b <- x@shape2
lbeta(a, b) - (a - 1) * digamma(a) - (b - 1) * digamma(b) +
(a + b - 2) * digamma(a + b)
})
#' @rdname Beta
#' @export
setMethod("finf",
signature = c(x = "Beta"),
definition = function(x) {
a <- x@shape1
b <- x@shape2
p1a <- trigamma(a)
p1b <- trigamma(b)
p1 <- trigamma(a + b)
D <- matrix(c(p1a - p1, - p1, - p1, p1b - p1), nrow = 2, ncol = 2)
rownames(D) <- c("shape1", "shape2")
colnames(D) <- c("shape1", "shape2")
D
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Likelihood ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Beta
#' @export
llbeta <- function(x, shape1, shape2) {
ll(x, prm = c(shape1, shape2), distr = Beta())
}
#' @rdname Beta
#' @export
setMethod("ll",
signature = c(x = "numeric", prm = "numeric", distr = "Beta"),
definition = function(x, prm, distr) {
length(x) * (lgamma(sum(prm)) - lgamma(prm[1]) - lgamma(prm[2])) +
(prm[1] - 1) * sum(log(x)) + (prm[2] - 1) * sum(log(1 - x))
})
# Bias Corrected log-likelihood
# (Firth, 1993, Cribari-Neto and Vasconcellos, 2010)
#ll = function(prm, x) {
# p1a = trigamma(prm[1])
# p1b = trigamma(prm[2])
# p1 = trigamma(sum(prm))
# d = p1a * p1b - p1 * (p1a + p1b)
# ld = log((length(x) ^ 2) * d) / 2
# sum(do.call(dbeta, c(list(x = x, log = TRUE), prm))) + ld
#}
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Score ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
setMethod("lloptim",
signature = c(par = "numeric", tx = "numeric", distr = "Beta"),
definition = function(par, tx, distr) {
a <- idigamma(digamma(par) + tx)
lgamma(sum(a)) - sum(lgamma(a)) + sum((a - 1) * tx)
})
setMethod("dlloptim",
signature = c(par = "numeric", tx = "numeric", distr = "Beta"),
definition = function(par, tx, distr) {
# Shape parameters (a, b) as a function of a0
a <- idigamma(digamma(par) + tx)
# a_i derivative wrt a0
da <- trigamma(par) / trigamma(a)
# lloptim derivative wrt a0 (par)
digamma(sum(a)) * sum(da) - sum(digamma(a) * da) + sum(tx * da)
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Estimation ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname estim
#' @export
ebeta <- function(x, type = "mle", ...) {
estim(x, Beta(), type, ...)
}
#' @rdname Beta
#' @export
setMethod("mle",
signature = c(x = "numeric", distr = "Beta"),
definition = function(x, distr,
par0 = "same",
method = "L-BFGS-B",
lower = 1e-5,
upper = Inf) {
tx <- c(mean(log(x)), mean(log(1 - x)))
par <- optim(par = sum(do.call(par0, list(x = x, distr = distr))),
fn = lloptim,
gr = dlloptim,
tx = tx,
distr = distr,
method = method,
lower = lower,
upper = upper,
control = list(fnscale = -1))$par
shape <- idigamma(digamma(par) + tx)
names(shape) <- paste0("shape", seq_along(shape))
shape
})
#' @rdname Beta
#' @export
setMethod("me",
signature = c(x = "numeric", distr = "Beta"),
definition = function(x, distr) {
m <- mean(x)
m2 <- mean(x ^ 2)
d <- (m - m2) / (m2 - m ^ 2)
c(shape1 = d * m, shape2 = d * (1 - m))
})
#' @rdname Beta
#' @export
setMethod("same",
signature = c(x = "numeric", distr = "Beta"),
definition = function(x, distr) {
mx <- mean(x)
mlx <- mean(log(x))
mxlx <- mean(x * log(x))
my <- 1 - mx
mly <- mean(log(1 - x))
myly <- mean((1 - x) * log(1 - x))
s <- mxlx - mx * mlx + myly - my * mly
c(shape1 = mx / s, shape2 = my / s)
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Avar ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Beta
#' @export
vbeta <- function(shape1, shape2, type = "mle") {
avar(Beta(shape1 = shape1, shape2 = shape2), type = type)
}
#' @rdname Beta
#' @export
setMethod("avar_mle",
signature = c(distr = "Beta"),
definition = function(distr) {
inv2x2(finf(distr))
})
#' @rdname Beta
#' @export
setMethod("avar_me",
signature = c(distr = "Beta"),
definition = function(distr) {
a <- distr@shape1
b <- distr@shape2
prd <- a * b
th <- a + b
th2 <- th ^ 2
s2 <- prd / (th2 * (th + 1))
s4 <- s2 ^ 2
m3 <- 2 * (b - a) * s2 / (th * (th + 2))
m4 <- 3 * prd * (prd * (th + 2) + 2 * (b - a) ^2) /
((th ^ 4) * (th + 1) * (th + 2) * (th + 3))
d <- (th + 1) ^ 2 * (th + 2) ^ 2 * s2
e <- (th + 1) ^ 3 * (m4 - s4 - m3 ^ 2 / s2) / s2
s11 <- (a * (a + 1)) ^ 2 / d + a * e / b
s22 <- (b * (b + 1)) ^ 2 / d + b * e / a
s12 <- - a * (a + 1) * b * (b + 1) / d + e
D <- matrix(c(s11, s12, s12, s22), nrow = 2, ncol = 2)
rownames(D) <- c("shape1", "shape2")
colnames(D) <- c("shape1", "shape2")
D
})
#' @rdname Beta
#' @export
setMethod("avar_same",
signature = c(distr = "Beta"),
definition = function(distr) {
a <- distr@shape1
b <- distr@shape2
prd <- a * b
th <- a + b
th2 <- th ^ 2
s2 <- prd / (th2 * (th + 1))
p1a <- trigamma(a)
p1b <- trigamma(b)
m1 <- matrix(c(a ^ 2, prd, prd, b ^ 2), nrow = 2, ncol = 2)
m2 <- matrix(c(prd, th2 - prd, th2 - prd, prd), nrow = 2, ncol = 2)
D <- (s2 * th2 * (p1a + p1b) + 1) * m1 - m2 / (th + 1)
rownames(D) <- c("shape1", "shape2")
colnames(D) <- c("shape1", "shape2")
D
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.