Nothing
`%!in%` = Negate(`%in%`)
import_pattern <-function (filepath){
if (nchar(readChar(filepath, file.info(filepath)$size)) ==
0) {
warning(paste(filepath, "imported 0 characters."))
}
readChar(filepath, file.info(filepath)$size)
}
extract_pattern <- function (filepath, keyword, preserve = FALSE){
stopifnot(is.logical(preserve), length(keyword) == 1)
x <- import_pattern(filepath)
keyword <- as.character(keyword)
if (!grepl(keyword, x))
stop("Couldn't find keyword in provided file.")
locations <- gregexpr(keyword, x)[[1]]
if (length(locations) < 2)
stop("Keyword only appears once in provided file.")
if (length(locations) > 2)
warning("Keyword found in more than two places. \n extract_pattern will only pull text between\n the first two occurances.")
if (preserve) {
substr(x, locations[[1]], locations[[2]] + nchar(keyword))
}
else {
substr(x, locations[[1]] + nchar(keyword), locations[[2]] -
1)
}
}
use_parameters <- function (template, names, init.params = TRUE, is.file = FALSE){
stopifnot(is.logical(init.params), is.logical(is.file), length(template) == 1)
if (is.file) {
content <- import_pattern(template)
x <- extract_pattern(template, "---", preserve = TRUE)
}
else {
content <- template
locations <- gregexpr("---", content)[[1]]
if (length(locations) < 2) {
stop("Not detecting YAML markers in the provided template. Did you mean\n to use is.file = TRUE?")
}
x <- substr(content, locations[[1]], locations[[2]] +
nchar("---"))
}
header_length <- nchar(x)
dots <- names
new_params <- paste0(vapply(lapply(dots, rlang::as_name),
function(x) paste0(" ", x, ": NA\n"), character(1)),
collapse = "")
if (init.params) {
init_params <- paste0(vapply(lapply(dots, rlang::as_name),
function(x) paste0(x, " <- params$", x, "\n"), character(1)),
collapse = "")
}
if (grepl("params:", x)) {
param_start <- regexpr("params:", x)[[1]][[1]]
param_end <- regexpr("\n[[:alpha:]]", substr(x, param_start,
header_length))[[1]][[1]] + param_start - 1
if (init.params) {
paste0(substr(x, 1, param_end), new_params, substr(x,
param_end + 1, header_length), "```{r, echo = FALSE}\n", init_params,
"```\n", substr(content, header_length, nchar(content)))
}
else {
paste0(substr(x, 1, param_end), new_params, substr(x,
param_end + 1, header_length), substr(content,
header_length, nchar(content)))
}
}
else {
if (init.params) {
paste0(substr(x, 1, header_length - 4), "params:\n",
new_params, "---\n", "```{r, echo = FALSE}\n\n", init_params,
"```\n", substr(content, header_length, nchar(content)))
}
else {
paste0(substr(x, 1, header_length - 4), "params:\n",
new_params, "---\n", substr(content, header_length,
nchar(content)))
}
}
}
m_default_gen <- function(){ #Might add arguments to this function
m_default <- matrix(nrow = 3, ncol = 2)
colnames(m_default) <- c("Cum Prob", "Expert_1")
#rownames(m_default) <- rep("Expert_1",3)
m_default[,1] <- c(0.025, 0.5, 0.975)
return(m_default)
}
m_default_gen2 <- function(){ #Might add arguments to this function
m_default <- matrix(nrow = 1, ncol = 1)
colnames(m_default) <- c("Expert_1")
rownames(m_default) <- "MLV"
return(m_default)
}
return_pooled_info <- function(input_mat, St_indic = 1,dist = "best", mode =NULL){
#dist_considered <- c("normal","t","gamma", "lognormal", "beta")
if(St_indic == 1){
lower_bound = 0
upper_bound = 1
}else{
lower_bound = -Inf
upper_bound = Inf
}
fit.eval <- expertsurv:::fitdist_mod(input_mat[,2:ncol(input_mat), drop = F],
probs = input_mat[,1], upper = upper_bound, lower = lower_bound,
expertnames = paste0("Expert_",1:(ncol(input_mat)-1)),
mode = mode, trunc = St_indic)
# browser()
plts_pool <- expertsurv:::makePoolPlot(fit= fit.eval,
xl =lower_bound,
xu =upper_bound,
d = dist,
w = 1,
lwd =1,
xlab = "x",
ylab =expression(f[X](x)),
legend_full = TRUE,
ql = NULL,
qu = NULL,
nx = 200,
addquantile = FALSE,
fs = 12,
expertnames = paste0("Expert_",1:(ncol(input_mat)-1)),
St_indic =St_indic)
dfs_pool <- plts_pool[["data"]]
if(dist == "best"){
selc_fit <- fit.eval$best.fitting[,"best.fit"]
}else{
selc_fit <- rep(dist, length(fit.eval$best.fitting[,"best.fit"]))
}
selc_fit_loc <- sapply(selc_fit, function(x){which(x == names(fit.eval$ssq))})
pool.df_output <- matrix(nrow = length(selc_fit),ncol = 3)
colnames(pool.df_output) <- c("param1", "param2", "param3")
for(j in 1:length(selc_fit_loc)){
pool.df_output[j,1:length(fit.eval[[selc_fit_loc[j]]][j,])] <- as.numeric(as.vector(fit.eval[[selc_fit_loc[j]]][j,]))
}
dfs_expert <- data.frame(dist = names(selc_fit_loc), wi = 1/nrow(pool.df_output), pool.df_output)
return(list(dfs_expert, plts_pool))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.