BetaNegBinom | R Documentation |
Probability mass function and random generation for the beta-negative binomial distribution.
dbnbinom(x, size, alpha = 1, beta = 1, log = FALSE)
pbnbinom(q, size, alpha = 1, beta = 1, lower.tail = TRUE, log.p = FALSE)
rbnbinom(n, size, alpha = 1, beta = 1)
x , q |
vector of quantiles. |
size |
number of trials (zero or more). Must be strictly positive, need not be integer. |
alpha , beta |
non-negative parameters of the beta distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
n |
number of observations. If |
If p \sim \mathrm{Beta}(\alpha, \beta)
and
X \sim \mathrm{NegBinomial}(r, p)
, then
X \sim \mathrm{BetaNegBinomial}(r, \alpha, \beta)
.
Probability mass function
f(x) = \frac{\Gamma(r+x)}{x! \,\Gamma(r)}
\frac{\mathrm{B}(\alpha+r, \beta+x)}{\mathrm{B}(\alpha, \beta)}
Cumulative distribution function is calculated using recursive algorithm that employs the fact that
\Gamma(x) = (x - 1)!
and
\mathrm{B}(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
. This enables re-writing probability mass function as
f(x) = \frac{(r+x-1)!}{x! \, \Gamma(r)} \frac{\frac{(\alpha+r-1)!\,(\beta+x-1)!}{(\alpha+\beta+r+x-1)!}}{\mathrm{B}(\alpha,\beta)}
what makes recursive updating from x
to x+1
easy using the properties of factorials
f(x+1) = \frac{(r+x-1)!\,(r+x)}{x!\,(x+1) \, \Gamma(r)} \frac{\frac{(\alpha+r-1)!\,(\beta+x-1)!\,(\beta+x)}{(\alpha+\beta+r+x-1)!\,(\alpha+\beta+r+x)}}{\mathrm{B}(\alpha,\beta)}
and let's us efficiently calculate cumulative distribution function as a sum of probability mass functions
F(x) = \sum_{k=0}^x f(k)
Beta
, NegBinomial
x <- rbnbinom(1e5, 1000, 5, 13)
xx <- 0:1e5
hist(x, 100, freq = FALSE)
lines(xx-0.5, dbnbinom(xx, 1000, 5, 13), col = "red")
hist(pbnbinom(x, 1000, 5, 13))
xx <- seq(0, 1e5, by = 0.1)
plot(ecdf(x))
lines(xx, pbnbinom(xx, 1000, 5, 13), col = "red", lwd = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.