GPD | R Documentation |
Density, distribution function, quantile function and random generation for the generalized Pareto distribution.
dgpd(x, mu = 0, sigma = 1, xi = 0, log = FALSE)
pgpd(q, mu = 0, sigma = 1, xi = 0, lower.tail = TRUE, log.p = FALSE)
qgpd(p, mu = 0, sigma = 1, xi = 0, lower.tail = TRUE, log.p = FALSE)
rgpd(n, mu = 0, sigma = 1, xi = 0)
x , q |
vector of quantiles. |
mu , sigma , xi |
location, scale, and shape parameters. Scale must be positive. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Probability density function
f(x) = \left\{\begin{array}{ll}
\frac{1}{\sigma} \left(1+\xi \frac{x-\mu}{\sigma}\right)^{-(\xi+1)/\xi} & \xi \neq 0 \\
\frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma}\right) & \xi = 0
\end{array}\right.
Cumulative distribution function
F(x) = \left\{\begin{array}{ll}
1-\left(1+\xi \frac{x-\mu}{\sigma}\right)^{-1/\xi} & \xi \neq 0 \\
1-\exp\left(-\frac{x-\mu}{\sigma}\right) & \xi = 0
\end{array}\right.
Quantile function
F^{-1}(x) = \left\{\begin{array}{ll}
\mu + \sigma \frac{(1-p)^{-\xi}-1}{\xi} & \xi \neq 0 \\
\mu - \sigma \log(1-p) & \xi = 0
\end{array}\right.
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.
x <- rgpd(1e5, 5, 2, .1)
hist(x, 100, freq = FALSE, xlim = c(0, 50))
curve(dgpd(x, 5, 2, .1), 0, 50, col = "red", add = TRUE, n = 5000)
hist(pgpd(x, 5, 2, .1))
plot(ecdf(x))
curve(pgpd(x, 5, 2, .1), 0, 50, col = "red", lwd = 2, add = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.