Huber | R Documentation |
Density, distribution function, quantile function and random generation for the "Huber density" distribution.
dhuber(x, mu = 0, sigma = 1, epsilon = 1.345, log = FALSE)
phuber(q, mu = 0, sigma = 1, epsilon = 1.345, lower.tail = TRUE, log.p = FALSE)
qhuber(p, mu = 0, sigma = 1, epsilon = 1.345, lower.tail = TRUE, log.p = FALSE)
rhuber(n, mu = 0, sigma = 1, epsilon = 1.345)
x , q |
vector of quantiles. |
mu , sigma , epsilon |
location, and scale, and shape parameters. Scale and shape must be positive. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Huber density is connected to Huber loss and can be defined as:
f(x) = \frac{1}{2 \sqrt{2\pi} \left( \Phi(k) + \phi(k)/k - \frac{1}{2} \right)} e^{-\rho_k(x)}
where
\rho_k(x) =
\left\{\begin{array}{ll}
\frac{1}{2} x^2 & |x|\le k \\
k|x|- \frac{1}{2} k^2 & |x|>k
\end{array}\right.
Huber, P.J. (1964). Robust Estimation of a Location Parameter. Annals of Statistics, 53(1), 73-101.
Huber, P.J. (1981). Robust Statistics. Wiley.
Schumann, D. (2009). Robust Variable Selection. ProQuest.
x <- rhuber(1e5, 5, 2, 3)
hist(x, 100, freq = FALSE)
curve(dhuber(x, 5, 2, 3), -20, 20, col = "red", add = TRUE, n = 5000)
hist(phuber(x, 5, 2, 3))
plot(ecdf(x))
curve(phuber(x, 5, 2, 3), -20, 20, col = "red", lwd = 2, add = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.