DiscreteWeibull | R Documentation |
Density, distribution function, quantile function and random generation for the discrete Weibull (type I) distribution.
ddweibull(x, shape1, shape2, log = FALSE)
pdweibull(q, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
qdweibull(p, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rdweibull(n, shape1, shape2)
x , q |
vector of quantiles. |
shape1 , shape2 |
parameters (named q, |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Probability mass function
f(x) = q^{x^\beta} - q^{(x+1)^\beta}
Cumulative distribution function
F(x) = 1-q^{(x+1)^\beta}
Quantile function
F^{-1}(p) = \left \lceil{\left(\frac{\log(1-p)}{\log(q)}\right)^{1/\beta} - 1}\right \rceil
Nakagawa, T. and Osaki, S. (1975). The Discrete Weibull Distribution. IEEE Transactions on Reliability, R-24, 300-301.
Kulasekera, K.B. (1994). Approximate MLE's of the parameters of a discrete Weibull distribution with type I censored data. Microelectronics Reliability, 34(7), 1185-1188.
Khan, M.A., Khalique, A. and Abouammoh, A.M. (1989). On estimating parameters in a discrete Weibull distribution. IEEE Transactions on Reliability, 38(3), 348-350.
Weibull
x <- rdweibull(1e5, 0.32, 1)
xx <- seq(-2, 100, by = 1)
plot(prop.table(table(x)), type = "h")
lines(xx, ddweibull(xx, .32, 1), col = "red")
# Notice: distribution of F(X) is far from uniform:
hist(pdweibull(x, .32, 1), 50)
plot(ecdf(x))
lines(xx, pdweibull(xx, .32, 1), col = "red", lwd = 2, type = "s")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.