LogSeries | R Documentation |
Density, distribution function, quantile function and random generation for the logarithmic series distribution.
dlgser(x, theta, log = FALSE)
plgser(q, theta, lower.tail = TRUE, log.p = FALSE)
qlgser(p, theta, lower.tail = TRUE, log.p = FALSE)
rlgser(n, theta)
x , q |
vector of quantiles. |
theta |
vector; concentration parameter; ( |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of observations. If |
Probability mass function
f(x) = \frac{-1}{\log(1-\theta)} \frac{\theta^x}{x}
Cumulative distribution function
F(x) = \frac{-1}{\log(1-\theta)} \sum_{k=1}^x \frac{\theta^x}{x}
Quantile function and random generation are computed using algorithm described in Krishnamoorthy (2006).
Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman & Hall/CRC
Forbes, C., Evans, M. Hastings, N., & Peacock, B. (2011). Statistical Distributions. John Wiley & Sons.
x <- rlgser(1e5, 0.66)
xx <- seq(0, 100, by = 1)
plot(prop.table(table(x)), type = "h")
lines(xx, dlgser(xx, 0.66), col = "red")
# Notice: distribution of F(X) is far from uniform:
hist(plgser(x, 0.66), 50)
xx <- seq(0, 100, by = 0.01)
plot(ecdf(x))
lines(xx, plgser(xx, 0.66), col = "red", lwd = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.