BivNormal | R Documentation |
Density, distribution function and random generation for the bivariate normal distribution.
dbvnorm(
x,
y = NULL,
mean1 = 0,
mean2 = mean1,
sd1 = 1,
sd2 = sd1,
cor = 0,
log = FALSE
)
rbvnorm(n, mean1 = 0, mean2 = mean1, sd1 = 1, sd2 = sd1, cor = 0)
x , y |
vectors of quantiles; alternatively x may be a two-column matrix (or data.frame) and y may be omitted. |
mean1 , mean2 |
vectors of means. |
sd1 , sd2 |
vectors of standard deviations. |
cor |
vector of correlations ( |
log |
logical; if TRUE, probabilities p are given as log(p). |
n |
number of observations. If |
Probability density function
f(x) = \frac{1}{2\pi\sqrt{1-\rho^2}\sigma_1\sigma_2}
\exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 -
2\rho \left(\frac{x_1 - \mu_1}{\sigma_1}\right) \left(\frac{x_2 - \mu_2}{\sigma_2}\right) +
\left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2\right]\right\}
Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman & Hall/CRC
Mukhopadhyay, N. (2000). Probability and statistical inference. Chapman & Hall/CRC
Normal
y <- x <- seq(-4, 4, by = 0.25)
z <- outer(x, y, function(x, y) dbvnorm(x, y, cor = -0.75))
persp(x, y, z)
y <- x <- seq(-4, 4, by = 0.25)
z <- outer(x, y, function(x, y) dbvnorm(x, y, cor = -0.25))
persp(x, y, z)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.