Categorical | R Documentation |
Probability mass function, distribution function, quantile function and random generation for the categorical distribution.
dcat(x, prob, log = FALSE)
pcat(q, prob, lower.tail = TRUE, log.p = FALSE)
qcat(p, prob, lower.tail = TRUE, log.p = FALSE, labels)
rcat(n, prob, labels)
rcatlp(n, log_prob, labels)
x , q |
vector of quantiles. |
prob , log_prob |
vector of length |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
labels |
if provided, labeled |
n |
number of observations. If |
Probability mass function
\Pr(X = k) = \frac{w_k}{\sum_{j=1}^m w_j}
Cumulative distribution function
\Pr(X \le k) = \frac{\sum_{i=1}^k w_i}{\sum_{j=1}^m w_j}
It is possible to sample from categorical distribution parametrized
by vector of unnormalized log-probabilities
\alpha_1,\dots,\alpha_m
without leaving the log space by employing the Gumbel-max trick (Maddison, Tarlow and Minka, 2014).
If g_1,\dots,g_m
are samples from Gumbel distribution with
cumulative distribution function F(g) = \exp(-\exp(-g))
,
then k = \mathrm{arg\,max}_i \{g_i + \alpha_i\}
is a draw from categorical distribution parametrized by
vector of probabilities p_1,\dots,p_m
, such that
p_i = \exp(\alpha_i) / [\sum_{j=1}^m \exp(\alpha_j)]
.
This is implemented in rcatlp
function parametrized by vector of
log-probabilities log_prob
.
Maddison, C. J., Tarlow, D., & Minka, T. (2014). A* sampling. [In:] Advances in Neural Information Processing Systems (pp. 3086-3094). https://arxiv.org/abs/1411.0030
# Generating 10 random draws from categorical distribution
# with k=3 categories occuring with equal probabilities
# parametrized using a vector
rcat(10, c(1/3, 1/3, 1/3))
# or with k=5 categories parametrized using a matrix of probabilities
# (generated from Dirichlet distribution)
p <- rdirichlet(10, c(1, 1, 1, 1, 1))
rcat(10, p)
x <- rcat(1e5, c(0.2, 0.4, 0.3, 0.1))
plot(prop.table(table(x)), type = "h")
lines(0:5, dcat(0:5, c(0.2, 0.4, 0.3, 0.1)), col = "red")
p <- rdirichlet(1, rep(1, 20))
x <- rcat(1e5, matrix(rep(p, 2), nrow = 2, byrow = TRUE))
xx <- 0:21
plot(prop.table(table(x)))
lines(xx, dcat(xx, p), col = "red")
xx <- seq(0, 21, by = 0.01)
plot(ecdf(x))
lines(xx, pcat(xx, p), col = "red", lwd = 2)
pp <- seq(0, 1, by = 0.001)
plot(ecdf(x))
lines(qcat(pp, p), pp, col = "red", lwd = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.