Bhattacharjee | R Documentation |
Density, distribution function, and random generation for the Bhattacharjee distribution.
dbhatt(x, mu = 0, sigma = 1, a = sigma, log = FALSE)
pbhatt(q, mu = 0, sigma = 1, a = sigma, lower.tail = TRUE, log.p = FALSE)
rbhatt(n, mu = 0, sigma = 1, a = sigma)
x , q |
vector of quantiles. |
mu , sigma , a |
location, scale and shape parameters. Scale and shape must be positive. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are |
n |
number of observations. If |
If Z \sim \mathrm{Normal}(0, 1)
and
U \sim \mathrm{Uniform}(0, 1)
, then
Z+U
follows Bhattacharjee distribution.
Probability density function
f(z) = \frac{1}{2a} \left[\Phi\left(\frac{x-\mu+a}{\sigma}\right) - \Phi\left(\frac{x-\mu-a}{\sigma}\right)\right]
Cumulative distribution function
F(z) = \frac{\sigma}{2a} \left[(x-\mu)\Phi\left(\frac{x-\mu+a}{\sigma}\right) -
(x-\mu)\Phi\left(\frac{x-\mu-a}{\sigma}\right) +
\phi\left(\frac{x-\mu+a}{\sigma}\right) -
\phi\left(\frac{x-\mu-a}{\sigma}\right)\right]
Bhattacharjee, G.P., Pandit, S.N.N., and Mohan, R. (1963). Dimensional chains involving rectangular and normal error-distributions. Technometrics, 5, 404-406.
x <- rbhatt(1e5, 5, 3, 5)
hist(x, 100, freq = FALSE)
curve(dbhatt(x, 5, 3, 5), -20, 20, col = "red", add = TRUE)
hist(pbhatt(x, 5, 3, 5))
plot(ecdf(x))
curve(pbhatt(x, 5, 3, 5), -20, 20, col = "red", lwd = 2, add = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.