Nothing
#' Plot pre-processed pupil data from `eyeris`
#'
#' S3 plotting method for objects of class `eyeris`. Plots a single-panel
#' timeseries for a subset of the pupil timeseries at each preprocessing step.
#' The intended use of this function is to provide a simple method for
#' qualitatively assessing the consequences of the preprocessing recipe and
#' parameters on the raw pupillary signal.
#'
#' @param x An object of class `eyeris` derived from [eyeris::load_asc()]
#' @param ... Additional arguments to be passed to `plot`
#' @param steps Which steps to plot; defaults to `all` (i.e., plot all steps).
#' Otherwise, pass in a vector containing the index of the step(s) you want to
#' plot, with index `1` being the original raw pupil timeseries
#' @param preview_n Number of random example "epochs" to generate for
#' previewing the effect of each preprocessing step on the pupil timeseries
#' @param preview_duration Time in seconds of each randomly selected preview
#' @param preview_window The start and stop raw timestamps used to subset the
#' preprocessed data from each step of the `eyeris` workflow for visualization
#' Defaults to NULL, meaning random epochs as defined by `preview_n` and
#' `preview_duration` will be plotted. To override the random epochs, set
#' `preview_window` here to a vector with relative start and stop times (in
#' seconds), for example -- `c(5,6)` -- to indicate the raw data from 5-6 secs
#' on data that were recorded at 1000 Hz). Note, the start/stop time values
#' indicated here are in seconds because `eyeris` automatically computes the
#' indices for the supplied range of seconds using the `$info$sample.rate`
#' metadata in the `eyeris` S3 class object
#' @param seed Random seed for current plotting session. Leave NULL to select
#' `preview_n` number of random preview "epochs" (of `preview_duration`) each
#' time. Otherwise, choose any seed-integer as you would normally select for
#' [base::set.seed()], and you will be able to continue re-plotting the same
#' random example pupil epochs each time -- which is helpful when adjusting
#' parameters within and across `eyeris` workflow steps
#' @param block For multi-block recordings, specifies which block to plot.
#' Defaults to 1. When a single `.asc` data file contains multiple
#' recording blocks, this parameter determines which block's timeseries to
#' visualize. Must be a positive integer not exceeding the total number of
#' blocks in the recording
#' @param plot_distributions Logical flag to indicate whether to plot both
#' diagnostic pupil timeseries *and* accompanying histograms of the pupil
#' samples at each processing step. Defaults to `FALSE`
#' @param suppress_prompt Logical flag to disable interactive confirmation
#' prompts during plotting. Defaults to `TRUE`, which avoids hanging behavior in
#' non-interactive or automated contexts (e.g., RMarkdown, scripts)
#' Set to `FALSE` only when running inside `glassbox()` with
#' `interactive_preview = TRUE`, where prompting after each step is desired, as
#' well as in the generation of interactive HTML reports with [eyeris::bidsify]
#' @param verbose A logical flag to indicate whether to print status messages to
#' the console. Defaults to `TRUE`. Set to `FALSE` to suppress messages about
#' the current processing step and run silently
#' @param add_progressive_summary Logical flag to indicate whether to add a
#' progressive summary plot after plotting. Defaults to `FALSE`. Set to `TRUE`
#' to enable the progressive summary plot (useful for interactive exploration).
#' Set to `FALSE` to disable the progressive summary plot (useful in automated
#' contexts like bidsify reports)
#' @param eye For binocular data, specifies which eye to plot: "left", "right",
#' or "both". Defaults to "left". For "both", currently plots left eye data
#' (use eye="right" for right eye data)
#' @param num_previews **(Deprecated)** Use `preview_n` instead
#'
#' @return No return value; iteratively plots a subset of the pupil timeseries
#' from each preprocessing step run
#'
#' @seealso [lifecycle::deprecate_warn()]
#'
#' @examples
#' # first, generate the preprocessed pupil data
#' my_eyeris_data <- system.file("extdata", "memory.asc", package = "eyeris") |>
#' eyeris::load_asc() |>
#' eyeris::deblink(extend = 50) |>
#' eyeris::detransient() |>
#' eyeris::interpolate() |>
#' eyeris::lpfilt(plot_freqz = TRUE) |>
#' eyeris::zscore()
#'
#' # controlling the timeseries range (i.e., preview window) in your plots:
#'
#' ## example 1: using the default 10000 to 20000 ms time subset
#' plot(my_eyeris_data, seed = 0, add_progressive_summary = TRUE)
#'
#' ## example 2: using a custom time subset (i.e., 1 to 500 ms)
#' plot(
#' my_eyeris_data,
#' preview_window = c(0.01, 0.5),
#' seed = 0,
#' add_progressive_summary = TRUE
#' )
#'
#' # controlling which block of data you would like to plot:
#'
#' ## example 1: plots first block (default)
#' plot(my_eyeris_data, seed = 0)
#'
#' ## example 2: plots a specific block
#' plot(my_eyeris_data, block = 1, seed = 0)
#'
#' ## example 3: plots a specific block along with a custom preview window
#' ## (i.e., 1000 to 2000 ms)
#' plot(
#' my_eyeris_data,
#' block = 1,
#' preview_window = c(1, 2),
#' seed = 0
#' )
#'
#' @rdname plot.eyeris
#'
#' @export
plot.eyeris <- function(
x,
...,
steps = NULL,
preview_n = NULL,
preview_duration = NULL,
preview_window = NULL,
seed = NULL,
block = 1,
plot_distributions = FALSE,
suppress_prompt = TRUE,
verbose = TRUE,
add_progressive_summary = FALSE,
eye = c("left", "right", "both"),
num_previews = deprecated()
) {
# handle deprecated parameters
if (is_present(num_previews)) {
deprecate_warn(
"1.2.0",
"plot(num_previews)",
"plot(preview_n)"
)
preview_n <- num_previews
}
eye_suffix <- NULL
# handle binocular eyeris objects
eye <- match.arg(eye)
if (is_binocular_object(x)) {
if (eye == "left") {
x <- x$left
eye_suffix <- "eye-L"
if (verbose) {
cli::cli_alert_info("[INFO] Plotting left eye data")
}
} else if (eye == "right") {
x <- x$right
eye_suffix <- "eye-R"
if (verbose) {
cli::cli_alert_info("[INFO] Plotting right eye data")
}
} else if (eye == "both") {
x <- x$left
if (verbose) {
cli::cli_alert_info("[INFO] Plotting left eye data (use eye='right' for right eye)")
}
}
}
# safely handle user's current options
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
# tests
tryCatch(
{
check_data(x, "plot")
},
error = function(e) {
error_handler(e, "input_data_type_error")
}
)
tryCatch(
{
check_pupil_cols(x, "plot")
},
error = function(e) {
error_handler(e, "missing_pupil_raw_error")
}
)
params <- list(...)
only_liner_trend <- if ("only_linear_trend" %in% names(params)) {
params$only_linear_trend <- params$only_linear_trend
} else {
params$only_linear_trend <- FALSE
}
non_plot_params <- c(
"preview_window",
"seed",
"steps",
"num_previews",
"preview_n",
"preview_duration",
"block",
"suppress_prompt",
"plot_distributions",
"only_linear_trend",
"next_step",
"add_progressive_summary",
"eye"
)
plot_params <- params[!(names(params) %in% non_plot_params)]
# set param defaults outside of function declaration
if (!is.null(preview_window)) {
if (!is.null(preview_n) || !is.null(preview_duration)) {
cli::cli_alert_warning(
paste(
"[WARN] preview_n and/or preview_duration will be ignored,",
"since preview_window was specified here."
)
)
}
}
if (is.null(steps)) {
steps <- "all"
}
if (is.null(preview_n)) {
preview_n <- 3
}
if (is.null(preview_duration)) {
preview_duration <- 5 # seconds
}
hz <- if (!is.na(x$decimated.sample.rate)) {
x$decimated.sample.rate
} else {
x$info$sample.rate
}
# handle random seed for this plotting session
if (is.null(seed)) {
seed <- sample.int(.Machine$integer.max, 1)
}
# blocks handler
if (is.list(x$timeseries) && !is.data.frame(x$timeseries)) {
available_blocks <- get_block_numbers(x)
if (block %in% available_blocks) {
pupil_data <- x$timeseries[[paste0("block_", block)]]
if (verbose) {
cli::cli_alert_info(sprintf(
"[INFO] Plotting block %d from possible blocks: %s",
block,
toString(available_blocks)
))
}
} else {
cli::cli_abort(sprintf(
"[EXIT] Block %d does not exist. Available blocks: %d",
block,
toString(available_blocks)
))
}
} else {
pupil_data <- x$timeseries$block_1
}
if (verbose) {
alert("info", paste("[INFO] Plotting with sampling rate:", hz, "Hz"))
}
pupil_steps <- grep("^pupil_", names(pupil_data), value = TRUE)
colorpal <- eyeris_color_palette()
colors <- c("black", colorpal)
transparent_colors <- sapply(colors, function(x) {
grDevices::adjustcolor(x, alpha.f = 0.5)
})
if (length(steps) == 1) {
if (steps[1] == "all") {
pupil_steps <- pupil_steps
colors <- colors
} else {
pupil_steps <- pupil_steps[steps]
colors <- colors[steps]
}
} else if (length(steps) > 1 && !is.null(preview_window)) {
pupil_steps <- pupil_steps[steps]
colors <- colors[steps]
} else {
pupil_steps <- pupil_steps
colors <- colors
}
if (is.null(preview_window)) {
withr::with_seed(seed, {
random_epochs <- draw_random_epochs(
pupil_data,
preview_n,
preview_duration,
hz
)
})
par(mfrow = c(1, preview_n), oma = c(0, 0, 3, 0))
detrend_plotted <- FALSE
for (i in seq_along(pupil_steps)) {
for (n in 1:preview_n) {
st <- min(random_epochs[[n]]$time_orig)
et <- max(random_epochs[[n]]$time_orig)
title <- paste0("\n[", st, " - ", et, "]")
header <- paste0(
gsub("_", " > ", gsub("pupil_", "", pupil_steps[i])),
if (is.list(x$timeseries) && !is.data.frame(x$timeseries)) {
paste(sprintf(" (Run %d)", block), if (!is.null(eye_suffix)) paste0(" (", eye_suffix, ")") else "")
} else {
""
}
)
if (grepl("z", pupil_steps[i])) {
y_units <- "(z)"
} else {
y_units <- "(a.u.)"
}
y_label <- paste("pupil size", y_units)
# used when running `plot()` by itself (and thus plotting all steps)
if (!only_liner_trend) {
if (grepl("_detrend$", pupil_steps[i]) && !detrend_plotted) {
# only attempt detrend overlay if detrend_fitted_values exists
if ("detrend_fitted_values" %in% colnames(pupil_data)) {
detrend_success <- plot_detrend_overlay(
pupil_data,
pupil_steps = pupil_steps,
preview_n = preview_n,
suppress_prompt = suppress_prompt
)
if (detrend_success) {
detrend_plotted <- TRUE
}
} else {
detrend_plotted <- TRUE
}
}
} else {
if (!detrend_plotted) {
if ("detrend_fitted_values" %in% colnames(pupil_data)) {
detrend_success <- plot_detrend_overlay(
pupil_data,
pupil_steps = pupil_steps,
preview_n = preview_n,
suppress_prompt = suppress_prompt
)
if (detrend_success) {
detrend_plotted <- TRUE
}
} else {
detrend_plotted <- TRUE
}
}
}
if (!is.null(params$next_step)) {
plot_data <- random_epochs[[n]][[
params$next_step[length(params$next_step)]
]]
} else {
plot_data <- random_epochs[[n]][[pupil_steps[i]]]
}
is_placeholder <- "message" %in%
colnames(random_epochs[[n]]) &&
any(random_epochs[[n]]$message == "NO_VALID_SAMPLES")
no_valid_data <- is.null(plot_data) || all(is.na(plot_data))
if (is_placeholder || no_valid_data) {
plot(NA, xlim = c(0, 1), ylim = c(0, 1), type = "n", xlab = "", ylab = "", main = title)
text(
0.5,
0.5,
"No valid samples\nin this segment.\n
Please re-run with a different `report_seed`",
cex = 0.8,
col = "red"
)
} else {
do.call(
robust_plot,
c(
list(y = plot_data, x = random_epochs[[n]]$time_scaled),
plot_params,
list(
type = "l",
col = colors[i],
lwd = 2,
main = title,
xlab = "time (ms)",
ylab = y_label
)
)
)
}
}
graphics::mtext(header, outer = TRUE, cex = 1.25, font = 2)
if (plot_distributions) {
plot_pupil_distribution(
data = pupil_data[[pupil_steps[i]]],
color = colors[i],
main = header,
xlab = y_label,
backuplab = "pupil size"
)
par(mfrow = c(1, preview_n), oma = c(0, 0, 3, 0))
}
}
par(mfrow = c(1, preview_n), oma = c(0, 0, 3, 0))
} else {
preview_window_indices <- round(preview_window * hz) + 1
start_index <- preview_window_indices[1]
end_index <- preview_window_indices[2]
if (
start_index < 1 ||
start_index > nrow(pupil_data) ||
end_index < 1 ||
end_index > nrow(pupil_data) ||
start_index >= end_index
) {
cli::cli_abort(
"[EXIT] Invalid preview_window: start/end index out of range or invalid."
)
}
sliced_pupil_data <- pupil_data[start_index:end_index, ]
# time axis in ms for proper scaling
time_ms <- (sliced_pupil_data$time_scaled - min(sliced_pupil_data$time_scaled))
for (i in seq_along(pupil_steps)) {
st <- pupil_data$time_orig[start_index]
et <- pupil_data$time_orig[end_index]
if (grepl("z", pupil_steps[i])) {
y_units <- "(z)"
} else {
y_units <- "(a.u.)"
}
y_label <- paste("pupil size", y_units)
do.call(
robust_plot,
c(
list(y = sliced_pupil_data[[pupil_steps[i]]], x = sliced_pupil_data$time_scaled),
plot_params,
list(
type = "l",
col = colors[i],
lwd = 2,
main = paste0(
gsub("_", " > ", gsub("pupil_", "", pupil_steps[i])),
if (is.list(x$timeseries) && !is.data.frame(x$timeseries)) {
sprintf(" (Run %d)", block)
} else {
""
},
"\n[",
st,
" - ",
et,
" ms] | ",
"[index: ",
preview_window_indices[1],
" - ",
preview_window_indices[2],
"]"
),
xlab = "time (secs)",
ylab = y_label
)
)
)
if (plot_distributions) {
plot_pupil_distribution(
data = pupil_data[[pupil_steps[i]]],
color = colors[i],
main = paste(paste0(
gsub("_", " > ", gsub("pupil_", "", pupil_steps[i])),
if (is.list(x$timeseries) && !is.data.frame(x$timeseries)) {
sprintf(" (Run %d)", block)
} else {
""
}
)),
xlab = y_label,
backuplab = "pupil size"
)
par(mfrow = c(1, 1), oma = c(0, 0, 0, 0))
}
}
par(mfrow = c(1, 1), oma = c(0, 0, 0, 0))
}
par(mfrow = c(1, 1), oma = c(0, 0, 0, 0))
# add progressive summary plot at the end (if requested)
if (add_progressive_summary) {
if (verbose) {
cli::cli_alert_info(
sprintf("[INFO] Creating progressive summary plot for block_%d", block)
)
}
tryCatch(
{
make_prog_summary_plot(
pupil_data = pupil_data,
pupil_steps = pupil_steps,
preview_n = preview_n,
plot_params = plot_params,
run_id = if (is.list(x$timeseries) && !is.data.frame(x$timeseries)) {
paste0("run-", sprintf("%02d", block))
} else {
"run-01"
},
cex = 1.15
)
if (verbose) {
cli::cli_alert_success(
"[OKAY] Progressive summary plot created successfully!"
)
}
},
error = function(e) {
if (verbose) {
cli::cli_alert_warning(
paste("[WARN] Could not create progressive summary plot:", e$message)
)
}
}
)
}
# reset plotting parameters to prevent downstream issues
par(mfrow = c(1, 1), oma = c(0, 0, 0, 0), mar = c(5, 4, 4, 2) + 0.1)
}
#' Draw random epochs for plotting
#'
#' Generates random time segments from the timeseries data for preview plotting.
#'
#' @param x A dataframe containing timeseries data
#' @param n Number of random epochs to draw
#' @param d Duration of each epoch in seconds
#' @param hz Sampling rate in Hz
#'
#' @return A list of dataframes, each containing a random epoch segment
#'
#' @keywords internal
draw_random_epochs <- function(x, n, d, hz) {
# get number of samples needed for specified duration
n_samples <- ceiling(d * hz)
min_time_secs <- min(x$time_secs, na.rm = TRUE)
max_time_secs <- max(x$time_secs, na.rm = TRUE)
if ((max_time_secs - min_time_secs) < d) {
cli::cli_abort("[EXIT] Example duration is longer than the duration of data.")
}
# get step size and ensure it's valid for the time range
step_size <- 1 / hz
time_range <- max_time_secs - d - min_time_secs
# case: if step size is larger than available time range, adjust it
if (step_size > time_range) {
step_size <- time_range / 10 # use 10 steps as a reasonable minimum?
if (step_size <= 0) {
step_size <- 0.001 # fallback to 1ms if still invalid?
}
}
drawn_epochs <- list()
max_attempts <- 100 # prevent looping forever
for (i in 1:n) {
attempts <- 0
valid_epoch_found <- FALSE
while (attempts < max_attempts && !valid_epoch_found) {
rand_start_secs <- sample(
seq(min_time_secs, max_time_secs - d, by = step_size),
1
)
rand_end_secs <- rand_start_secs + d
epoch_data <- x |>
dplyr::filter(time_secs >= rand_start_secs & time_secs < rand_end_secs)
# ensure proper x-axis scaling with the time_orig column in ms
epoch_data$time_scaled <- (epoch_data$time_secs - rand_start_secs) * 1000
pupil_cols <- grep("^pupil_", colnames(epoch_data), value = TRUE)
if (length(pupil_cols) > 0) {
has_valid_data <- any(sapply(pupil_cols, function(col) {
any(is.finite(epoch_data[[col]]))
}))
if (has_valid_data) {
drawn_epochs[[i]] <- epoch_data
valid_epoch_found <- TRUE
} else {
attempts <- attempts + 1
}
} else {
drawn_epochs[[i]] <- epoch_data
valid_epoch_found <- TRUE
}
}
if (!valid_epoch_found) {
placeholder_data <- data.frame(
time_secs = c(rand_start_secs, rand_end_secs),
time_orig = c(rand_start_secs, rand_end_secs),
time_scaled = c(0, d * 1000),
message = c("NO_VALID_SAMPLES", "NO_VALID_SAMPLES")
)
drawn_epochs[[i]] <- placeholder_data
cli::cli_alert_warning(
paste0(
"[WARN] Randomly selected plot segment ",
i,
" had no valid samples. ",
"Please re-run with a different `report_seed`."
)
)
}
}
drawn_epochs
}
#' Robust plotting function with error handling
#'
#' A wrapper around base plotting functions that handles errors and missing
#' data gracefully.
#'
#' @param y The y-axis data to plot
#' @param x The x-axis data (optional, defaults to sequence)
#' @param ... Additional arguments passed to plot()
#'
#' @return No return value; creates a plot or displays warning messages
#'
#' @keywords internal
robust_plot <- function(y, x = NULL, ...) {
tryCatch(
{
if (length(y) == 0 || all(is.na(y))) {
cli::cli_alert_warning("[WARN] No finite data to plot.")
return(invisible(NULL))
}
dots <- list(...)
col_user <- if ("col" %in% names(dots)) dots$col else "blue"
# store original y for getting NA positions
y_orig <- y
# if x is NULL, use 1:length(y)
if (is.null(x)) {
x_seq <- seq_along(y_orig)
} else {
x_seq <- x
}
# init placeholder line
plot(x_seq, ifelse(is.na(y_orig), NA, y_orig), xlim = range(x_seq, na.rm = TRUE), ...)
# add vertical lines where there are NAs (using x values if available)
na_idx <- which(is.na(y_orig))
if (length(na_idx) > 0) {
abline(
v = if (!is.null(x)) x_seq[na_idx] else na_idx,
col = "black",
lty = 2
)
}
# replace NA with -1 after drawing NA lines for continuity
y_clean <- y_orig
y_clean[is.na(y_clean)] <- -1
lines(x_seq, y_clean, col = col_user)
},
error = function(e) {
cli::cli_alert_warning(
paste("[WARN] An error occurred during plotting:", e$message)
)
},
warning = function(w) {
cli::cli_alert_warning(
paste("[WARN] A warning occurred during plotting:", w$message)
)
}
)
}
#' Plot pupil distribution histogram
#'
#' Creates a histogram of pupil size distribution with customizable parameters.
#'
#' @param data The pupil data to plot
#' @param color The color for the histogram bars
#' @param main The main title for the plot
#' @param xlab The x-axis label
#' @param backuplab A backup label if xlab is NULL
#'
#' @return No return value; creates a histogram plot
#'
#' @keywords internal
plot_pupil_distribution <- function(data, color, main, xlab, backuplab = NULL) {
# safely handle user's current options
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
par(mfrow = c(1, 1), oma = c(0, 0, 0, 0))
new_xlab <- if (!is.null(xlab)) {
xlab
} else if (!is.null(backuplab)) {
backuplab
} else {
"pupil size"
}
hist(
data,
main = main,
xlab = new_xlab,
ylab = "frequency (count)",
col = color,
border = "white",
breaks = "FD"
)
}
#' Draw vertical lines at NA positions
#'
#' Adds vertical dashed lines at positions where y values are NA.
#'
#' @param x The x-axis values
#' @param y The y-axis values
#' @param ... Additional arguments passed to abline()
#'
#' @return No return value; adds lines to the current plot
#'
#' @keywords internal
draw_na_lines <- function(x, y, ...) {
na_idx <- which(is.na(y))
abline(v = x[na_idx], col = "black", lty = 2, ...)
}
#' Internal helper to plot detrending overlay
#'
#' This function replicates the exact detrending visualization from the
#' `glassbox()` interactive preview mode. It uses `robust_plot()` to show the
#' most recent detrended pupil signal overlaid with the fitted linear trend.
#'
#' @param pupil_data A single block of pupil timeseries data
#' (e.g. `eyeris$timeseries$block_1`)
#' @param preview_n Number of columns for `par(mfrow)`. Default = 3.
#' @param plot_params A named list of additional parameters to forward to
#' `robust_plot()`
#' @param suppress_prompt Logical. Whether to skip prompting. Default = TRUE.
#'
#' @return Logical indicating whether detrend overlay was plotted successfully
#'
#' @keywords internal
plot_detrend_overlay <- function(
pupil_data,
pupil_steps,
preview_n = preview_n,
plot_params = list(),
suppress_prompt = TRUE
) {
# store current par settings to restore them in case func returns early
old_par <- par(no.readonly = TRUE)
on.exit(par(old_par), add = TRUE)
par(mfrow = c(1, 1), oma = c(0, 0, 0, 0))
detrend_step <- grep("_detrend$", pupil_steps, value = TRUE)
all_cols <- colnames(pupil_data)
detrend_fitted_index <- which(all_cols == "detrend_fitted_values")
# guard if detrend_fitted_values exists and has a valid previous column
if (length(detrend_fitted_index) == 0) {
cli::cli_alert_danger(
"[WARN] detrend_fitted_values not found in eyeris S3 object."
)
par(mfrow = c(1, preview_n), oma = c(0, 0, 3, 0))
return(FALSE)
}
if (detrend_fitted_index <= 1) {
cli::cli_alert_warning(
"[WARN] No previous pupil column found to plot detrend overlay against. ",
"This can happen when detrend is the only preprocessing step enabled."
)
# restore main plotting func layout
par(mfrow = c(1, preview_n), oma = c(0, 0, 3, 0))
return(FALSE)
}
prev_col <- all_cols[detrend_fitted_index - 1]
# ensure prev col is a pupil col
if (!grepl("^pupil_", prev_col)) {
cli::cli_alert_warning(
"[WARN] Previous column is not a pupil column. Cannot plot detrend overlay."
)
# restore main plotting func layout
par(mfrow = c(1, preview_n), oma = c(0, 0, 3, 0))
return(FALSE)
}
ydat <- pupil_data[[prev_col]]
xdat <- pupil_data$time_secs
do.call(
robust_plot,
c(
list(y = ydat, x = xdat),
plot_params,
list(
type = "l",
col = "black",
lwd = 2,
main = paste0(
"detrend:\n",
gsub("_", " > ", gsub("pupil_", "", detrend_step))
),
xlab = "tracker time (s)",
ylab = "pupil size (a.u.)"
)
)
)
lines(pupil_data$time_secs, pupil_data$detrend_fitted_values, type = "l", col = "blue", lwd = 2, lty = 1)
legend("topleft", legend = c("pupil timeseries", "linear trend"), col = c("black", "blue"), lwd = 2, lty = c(1, 1))
par(mfrow = c(1, preview_n), oma = c(0, 0, 3, 0))
if (!suppress_prompt) {
prompt_user()
}
return(TRUE)
}
#' Create gaze heatmap of eye coordinates
#'
#' Creates a heatmap showing the distribution of eye_x and eye_y coordinates
#' across the entire screen area. The heatmap shows where the participant
#' looked most frequently during the recording period.
#'
#' @param eyeris An object of class `eyeris` derived from [eyeris::load_asc()]
#' @param block Block number to plot (default: 1)
#' @param screen_width Screen width in pixels from eyeris$info$screen.x
#' @param screen_height Screen height in pixels from eyeris$info$screen.y
#' @param n_bins Number of bins for the heatmap grid (default: 50)
#' @param col_palette Color palette for the heatmap (default: "viridis")
#' @param main Title for the plot (default: "Fixation Heatmap")
#' @param xlab X-axis label (default: "Screen X (pixels)")
#' @param ylab Y-axis label (default: "Screen Y (pixels)")
#' @param sample_rate Sample rate in Hz (optional)
#' @param eye_suffix Eye suffix for binocular data (default: NULL)
#'
#' @return No return value; creates a heatmap plot
#'
#' @examples
#' demo_data <- eyelink_asc_demo_dataset()
#' eyeris_preproc <- glassbox(demo_data)
#' plot_gaze_heatmap(eyeris = eyeris_preproc, block = 1)
#'
#' @export
plot_gaze_heatmap <- function(
eyeris,
block = 1,
screen_width = NULL,
screen_height = NULL,
n_bins = 50,
col_palette = "viridis",
main = "Gaze Heatmap",
xlab = "Screen X (pixels)",
ylab = "Screen Y (pixels)",
sample_rate = NULL,
eye_suffix = NULL
) {
if (inherits(eyeris, "eyeris")) {
block_str <- paste0("block_", block)
if (is.null(screen_width)) {
screen_width <- eyeris$info$screen.x
}
if (is.null(screen_height)) {
screen_height <- eyeris$info$screen.y
}
df <- eyeris$timeseries[[block_str]]
if (!is.data.frame(df)) {
cli::cli_alert_warning("[WARN] Block not found in eyeris object.")
return(invisible(NULL))
}
} else {
df <- eyeris
if (is.null(screen_width) || is.null(screen_height)) {
cli::cli_abort("[EXIT] Screen width and height must be provided with dataframe inputs.")
}
}
if (!all(c("eye_x", "eye_y") %in% colnames(df))) {
cli::cli_alert_warning("[WARN] eye_x and/or eye_y columns not found in input data.")
return(invisible(NULL))
}
valid_coords <- !is.na(df$eye_x) & !is.na(df$eye_y)
if (sum(valid_coords) == 0) {
cli::cli_alert_warning("[WARN] No valid eye coordinates found")
return(invisible(NULL))
}
x_coords <- df$eye_x[valid_coords]
y_coords <- df$eye_y[valid_coords]
if (!is.null(eye_suffix)) {
main <- paste0(main, " - ", eye_suffix)
}
tryCatch(
{
dens <- MASS::kde2d(x_coords, y_coords, n = n_bins, lims = c(0, screen_width, 0, screen_height))
norm_density <- dens$z / max(dens$z, na.rm = TRUE)
if (col_palette == "viridis") {
colors <- viridis::viridis(100)
} else if (col_palette == "plasma") {
colors <- viridis::plasma(100)
} else if (col_palette == "inferno") {
colors <- viridis::inferno(100)
} else if (col_palette == "magma") {
colors <- viridis::magma(100)
} else {
colors <- grDevices::heat.colors(100)
}
fields::image.plot(
x = dens$x,
y = dens$y,
z = t(norm_density)[, rev(seq_len(nrow(norm_density)))],
col = colors,
main = main,
xlab = xlab,
ylab = ylab,
xlim = c(0, screen_width),
ylim = c(screen_height, 0),
legend.lab = "Normalized density",
legend.line = 2.5,
zlim = c(0, 1)
)
rect(0, 0, screen_width, screen_height, border = "black", lwd = 2)
points(screen_width / 2, screen_height / 2, pch = 3, col = "red", cex = 1.5)
},
error = function(e) {
plot(
x_coords,
y_coords,
pch = 16,
cex = 0.5,
col = grDevices::adjustcolor("blue", alpha.f = 0.6),
main = main,
xlab = xlab,
ylab = ylab,
xlim = c(0, screen_width),
ylim = c(screen_height, 0)
)
rect(0, 0, screen_width, screen_height, border = "black", lwd = 2)
points(screen_width / 2, screen_height / 2, pch = 3, col = "red", cex = 1.5)
}
)
}
#' Plot binocular correlation between left and right eye data
#'
#' Creates correlation plots showing the relationship between left and right eye
#' measurements for pupil size, x-coordinates, and y-coordinates. This function
#' is useful for validating binocular data quality and assessing the correlation
#' between the two eyes.
#'
#' @param eyeris An object of class `eyeris` derived from [eyeris::load_asc()]
#' with binocular data, or a list containing `left` and `right` eyeris objects
#' (from `binocular_mode = "both"`)
#' @param block Block number to plot (default: 1)
#' @param variables Variables to plot correlations for. Defaults to
#' `c("pupil", "x", "y")` for pupil size, x-coordinates, and y-coordinates
#' @param main Title for the overall plot (default: "Binocular Correlation")
#' @param col_palette Color palette for the plots (default: "viridis")
#' @param sample_rate Sample rate in Hz (optional, for time-based sampling)
#' @param verbose Logical flag to indicate whether to print status messages
#' (default: TRUE)
#'
#' @return No return value; creates correlation plots
#'
#' @examples
#' # For binocular data loaded with binocular_mode = "both"
#' binocular_data <- load_asc(eyelink_asc_binocular_demo_dataset(), binocular_mode = "both")
#' plot_binocular_correlation(binocular_data)
#'
#' # For binocular data loaded with binocular_mode = "average"
#' # (correlation plot will show original left vs right before averaging)
#' avg_data <- load_asc(eyelink_asc_binocular_demo_dataset(), binocular_mode = "average")
#' plot_binocular_correlation(avg_data$raw_binocular_object)
#'
#' @export
plot_binocular_correlation <- function(
eyeris,
block = 1,
variables = c("pupil", "x", "y"),
main = "",
col_palette = "viridis",
sample_rate = NULL,
verbose = TRUE
) {
# check if a binocular object (from binocular_mode = "both")
if (is_binocular_object(eyeris)) {
left_data <- eyeris$left
right_data <- eyeris$right
has_binocular <- TRUE
} else {
# check if a regular eyeris object with binocular columns
if (all(c("left", "right") %in% names(eyeris))) {
left_data <- eyeris$left
right_data <- eyeris$right
has_binocular <- TRUE
} else {
left_data <- eyeris
right_data <- eyeris
has_binocular <- isTRUE(eyeris$binocular)
}
}
block_str <- paste0("block_", block)
if (has_binocular) {
if (!block_str %in% names(left_data$timeseries)) {
cli::cli_alert_danger(
sprintf("[WARN] Block %d not found in left eye data", block)
)
}
if (!block_str %in% names(right_data$timeseries)) {
cli::cli_alert_danger(
sprintf("[WARN] Block %d not found in right eye data", block)
)
}
left_df <- left_data$timeseries[[block_str]]
right_df <- right_data$timeseries[[block_str]]
# require exact match for pupil_raw; if not present, skip plot with message
if (!"pupil_raw" %in% colnames(left_df)) {
plot.new()
title(main = "Skipped: No pupil_raw column found in left eye data")
cli::cli_alert_warning("[WARN] Skipped: No pupil_raw column found in left eye data")
return(invisible(NULL))
}
pupil_col <- grep("^pupil_", colnames(left_df), value = TRUE)
if (length(pupil_col) == 0) {
cli::cli_alert_danger("[WARN] No pupil columns found in left eye data")
}
pupil_col <- pupil_col[1] # use the first pupil column
pupil_col <- "pupil_raw"
left_pupil <- left_df[[pupil_col]]
right_pupil <- right_df[[pupil_col]]
left_x <- left_df$eye_x
left_y <- left_df$eye_y
right_x <- right_df$eye_x
right_y <- right_df$eye_y
} else {
# for regular eyeris objects, check for binocular columns
if (!block_str %in% names(left_data$timeseries)) {
cli::cli_alert_danger(
sprintf("[WARN] Block %d not found in eyeris data", block)
)
}
df <- left_data$timeseries[[block_str]]
if (!has_binocular) {
cli::cli_alert_danger(
paste(
"[WARN] No binocular columns (psl, psr, xpl, xpr, ypl, ypr) found in",
"data. Use binocular_mode = 'both' when loading data to enable",
"this function."
)
)
}
left_pupil <- df$psl
right_pupil <- df$psr
left_x <- df$xpl
left_y <- df$ypl
right_x <- df$xpr
right_y <- df$ypr
}
n_vars <- length(variables)
if (n_vars == 1) {
par(mfrow = c(1, 1))
} else if (n_vars == 2) {
par(mfrow = c(1, 2))
} else {
par(mfrow = c(1, 3))
}
if (col_palette == "viridis") {
colors <- viridis::viridis(100)
} else if (col_palette == "plasma") {
colors <- viridis::plasma(100)
} else if (col_palette == "inferno") {
colors <- viridis::inferno(100)
} else if (col_palette == "magma") {
colors <- viridis::magma(100)
} else {
colors <- grDevices::heat.colors(100)
}
# create correlation plots for each variable
for (var in variables) {
if (var == "pupil") {
left_var <- left_pupil
right_var <- right_pupil
xlab <- "Left Eye Pupil Size\n"
ylab <- "Right Eye Pupil Size"
title <- ""
} else if (var == "x") {
left_var <- left_x
right_var <- right_x
xlab <- "Left Eye X-Coordinate\n"
ylab <- "Right Eye X-Coordinate"
title <- ""
} else if (var == "y") {
left_var <- left_y
right_var <- right_y
xlab <- "Left Eye Y-Coordinate\n"
ylab <- "Right Eye Y-Coordinate"
title <- ""
} else {
cli::cli_alert_warning(
sprintf("[WARN] Unknown variable '%s', skipping", var)
)
next
}
# remove NA values for correlation calculation
valid_data <- !is.na(left_var) & !is.na(right_var)
if (sum(valid_data) == 0) {
cli::cli_alert_warning(
sprintf("[WARN] No valid data for %s correlation", var)
)
next
}
left_clean <- left_var[valid_data]
right_clean <- right_var[valid_data]
cor_value <- cor(left_clean, right_clean, use = "complete.obs")
tryCatch(
{
plot(
left_clean,
right_clean,
pch = 16,
cex = 0.5,
main = sprintf("%s\nr = %.3f", title, cor_value),
xlab = xlab,
ylab = ylab,
xlim = c(min(min(left_clean), min(right_clean)), max(max(left_clean), max(right_clean))),
ylim = c(min(min(left_clean), min(right_clean)), max(max(left_clean), max(right_clean))),
col = grDevices::adjustcolor("blue", alpha.f = 0.6)
)
abline(0, 1, col = "red", lwd = 2, lty = 2)
},
error = function(e) {
cli::cli_alert_warning(
sprintf("[WARN] Error creating correlation plot for %s: %s", var, e$message)
)
}
)
}
mtext(main, outer = TRUE, cex = 1.25, font = 2, line = -1)
# reset plotting parameters
par(mfrow = c(1, 1))
if (verbose) {
cli::cli_alert_success(
sprintf("[OKAY] Created binocular correlation plots for block %d", block)
)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.