R/FamiliarEnsemble.R

Defines functions .get_available_stratification_ensemble_methods .report_ensemble_models

#' @include FamiliarS4Generics.R
#' @include FamiliarS4Classes.R
NULL

# complete_familiar_ensemble ---------------------------------------------------
setMethod(
  "complete_familiar_ensemble",
  signature(object = "familiarEnsemble"),
  function(
    object,
    dir_path = NULL) {
    # Fills out missing data from a familiarEnsemble based on attached models
    # and internal logic.

    # Load models
    object <- ..update_model_list(
      object = object,
      dir_path = dir_path)
    model_list <- ..get_model(object = object)

    # Determine which models were trained.
    trained_mask <- sapply(model_list, model_is_trained)

    # If no models were trained, select all models, otherwise select only the
    # models that were trained.
    if (any(trained_mask)) model_list <- model_list[trained_mask]

    # Add outcome_type and outcome_info to object. These slots are required in
    # some of the other aggregators.
    object@outcome_type <- model_list[[1]]@outcome_type
    object@outcome_info <- .aggregate_outcome_info(
      x = lapply(
        model_list,
        function(list_elem) (list_elem@outcome_info)))

    # Find all required features
    required_features <- unique(unlist(lapply(
      model_list,
      function(fam_model) (fam_model@required_features))))

    # Find all important features for the model.
    model_features <- unique(unlist(lapply(
      model_list,
      function(fam_model) (fam_model@model_features))))

    # Find all important features for novelty detection.
    novelty_features <- unique(unlist(lapply(
      model_list, 
      function(fam_model) (fam_model@novelty_features))))

    # Aggregate feature information
    if (length(required_features) > 0) {
      feature_info_list <- lapply(required_features,
        .collect_and_aggregate_feature_info,
        object = object,
        model_list = model_list,
        stop_at = "imputation"
      )

      # Add name to features.
      names(feature_info_list) <- required_features
      
    } else {
      feature_info_list <- NULL
    }

    # Aggregate calibration info
    calibration_info <- extract_calibration_info(
      object = object,
      detail_level = "hybrid")
    calibration_info <- .compute_data_element_estimates(calibration_info)
    
    if (is_empty(calibration_info)) {
      calibration_info <- NULL
    } else {
      calibration_info <- calibration_info[[1]]@data
    }

    # Generate a new version of the ensemble to avoid unnecessary copying.
    fam_ensemble <- methods::new("familiarEnsemble",
      model_list = object@model_list,
      outcome_type = object@outcome_type,
      outcome_info = object@outcome_info,
      data_column_info = model_list[[1]]@data_column_info,
      learner = object@learner,
      fs_method = object@fs_method,
      required_features = required_features,
      model_features = model_features,
      novelty_features = novelty_features,
      feature_info = feature_info_list,
      run_table = object@run_table,
      calibration_info = calibration_info,
      model_dir_path = object@model_dir_path,
      auto_detach = object@auto_detach,
      settings = model_list[[1]]@settings,
      project_id = model_list[[1]]@project_id
    )

    # Add package version to the ensemble
    fam_ensemble <- add_package_version(object = fam_ensemble)

    return(fam_ensemble)
  }
)



# show (familiarEnsemble) ------------------------------------------------------
setMethod(
  "show",
  signature(object = "familiarEnsemble"),
  function(object) {
    # Make sure the model object is updated.
    object <- update_object(object = object)

    # Flag to show additional information.
    show_additional_information <- TRUE

    if (!is_model_loaded(object)) {
      cat(paste0(
        "An ensemble of ", length(object@model_list), " ",
        object@learner, " ",
        ifelse(length(object@model_list) == 1, "model", "models"),
        " (", .familiar_version_string(object), ").\n"
      ))
      
    } else {
      cat(paste0(
        "An ensemble of ", length(object@model_list), " ",
        object@learner, " ",
        ifelse(length(object@model_list) == 1, "model", "models"),
        " (", .familiar_version_string(object), ").\n"
      ))

      # Determine how many models are trained.
      model_trained <- sapply(object@model_list, model_is_trained)

      if (length(model_trained) == 1) {
        show(object@model_list[[1]])

        # Update the flag to prevent showing redundant information.
        show_additional_information <- FALSE
        
      } else {
        cat(paste0("\n", .report_ensemble_models(object = object), "\n"))
      }
    }

    if (show_additional_information) {
      # Outcome details
      cat("\nThe following outcome was modelled:\n")
      show(object@outcome_info)

      # Details concerning variable importance.
      cat(paste0(
        "\nVariable importance was determined using the ",
        object@fs_method, " variable importance method.\n"))

      # Details concerning model features:
      cat("\nThe following features were used in the ensemble:\n")
      lapply(
        object@model_features,
        function(x, object) {
          cat(.show_simple_feature_info(
            object@feature_info[[x]],
            line_end = ".\n"))
        },
        object = object)
    }
  }
)



# get_prediction_type (familiarEnsemble) ---------------------------------------
setMethod(
  "get_prediction_type",
  signature(object = "familiarEnsemble"),
  function(object, ...) {
    # This dispatches to get_prediction_type for the familiarModel subclass if a
    # model is attached, and to character if not. The latter option then loads
    # the familiarModel.
    return(do.call(
      get_prediction_type,
      args = c(
        list("object" = object@model_list[[1]]),
        list(...))))
  }
)



# get_prediction_type (character) ----------------------------------------------
setMethod(
  "get_prediction_type",
  signature(object = "character"),
  function(object, ...) {
    object <- load_familiar_object(object)
    
    return(do.call(
      get_prediction_type,
      args = c(
        list("object" = object),
        list(...))))
  }
)



# ..get_model (numeric, familiarEnsemble) --------------------------------------
setMethod(
  "..get_model",
  signature(
    ii = "numeric",
    object = "familiarEnsemble"),
  function(ii, object) {
    
    if (ii > length(object@model_list)) {
      ..error_reached_unreachable_code(paste0(
        "..get_model,familiarEnsemble: the requested index (", ii,
        ") exceeds the total number of models in the ensemble (",
        length(object@model_list)))
    }
    
    # If the model is already attached, dispatch to calling function.
    if (is(object@model_list[[ii]], "familiarModel")) {
      return(object@model_list[[ii]])
    }
    
    # If the model has been detached, load, and then dispatch.
    # First check if the file exists.
    if (!file.exists(object@model_list[[ii]])) {
      # Obtain the file name of the model.
      model_file_name <- ..get_model_file_path(
        ii = ii,
        object = object)

      # Load the model if the file exists.
      if (!is.null(model_file_name)) {
        return(load_familiar_object(model_file_name))
      }

      # If no model could be found, throw an error.
      stop(paste0(
        "..get_model,familiarEnsemble: cannot find the indicated familiarModel",
        object@model_list[[ii]]))
    }
    
    return(load_familiar_object(object@model_list[[ii]]))
  }
)



# ..get_model (missing, familiarEnsemble) --------------------------------------
setMethod(
  "..get_model",
  signature(
    ii = "missing",
    object = "familiarEnsemble"),
  function(ii, object, ...) {
    
    if (length(object@model_list) > 0) {
      # Dispatch get_model.
      return(lapply(
        seq_along(object@model_list),
        ..get_model,
        object = object,
        ...))
      
    } else {
      return(NULL)
    }
  }
)



# ..get_model_file_path (numeric, familiarEnsemble) ----------------------------
setMethod(
  "..get_model_file_path",
  signature(
    ii = "numeric",
    object = "familiarEnsemble"),
  function(ii, object, dir_path = NULL) {
    
    if (ii > length(object@model_list)) {
      ..error_reached_unreachable_code(paste0(
        "..get_model_file_path,familiarEnsemble: the requested index (", ii,
        ") exceeds the total number of models in the ensemble (",
        length(object@model_list)))
    }

    # There are three directories a file can be located, namely:
    #
    # * dir_path: a user-specified path
    #
    # * mb_dir_path: based on file_paths environment variable
    #
    # * model_dir_path: based on the directory path stored with the object.
    #
    # These possibilities are ordered by precedence.

    # Try to find dir_path
    if (!is.null(dir_path)) {
      # Check if the dir_path actually points to a file, and strip the file
      # instead. Note that file.exists also returns TRUE if the path is a
      # directory.
      if (file.exists(dir_path) && !dir.exists(dir_path)) {
        dir_path <- dirname(dir_path)
      }

      # If the directory does not exist, set to NULL.
      if (!dir.exists(dir_path)) dir_path <- NULL
    }

    # Obtain the directory path stored in the file_paths environment variable
    # (if any).
    mb_dir_path <- tryCatch(
      get_file_paths()$mb_dir,
      error = function(err) (return(NULL))
    )

    # Obtain the directory path from the familiarEnsemble object.
    model_dir_path <- object@model_dir_path

    # Identify the basic model file name.
    if (is(object@model_list[[ii]], "familiarModel")) {
      # Generate the file name from the model.
      model_file_name <- get_object_name(
        object = object@model_list[[ii]],
        abbreviated = FALSE)
      model_file_name <- paste0(model_file_name, ".RDS")
      
    } else {
      # Generate the file name from the stored string.
      model_file_name <- basename(object@model_list[[ii]])
    }

    # Using the user-provided dir_path
    if (!is.null(dir_path)) {
      # File is directly located in the given directory
      file_path_1 <- file.path(dir_path, model_file_name)

      if (file.exists(file_path_1)) return(file_path_1)

      # File is located in a subdirectory of dir_path.
      file_path_2 <- file.path(
        get_object_dir_path(
          dir_path = dir_path,
          object_type = "familiarModel",
          learner = object@learner,
          fs_method = object@fs_method),
        model_file_name)

      if (file.exists(file_path_2)) return(file_path_2)
    }

    # Using the file directory indicated by the file_paths environment variable.
    if (!is.null(mb_dir_path)) {
      # File is directly located in the given directory
      file_path_3 <- file.path(mb_dir_path, model_file_name)

      if (file.exists(file_path_3)) return(file_path_3)

      # File is located in a subdirectory of dir_path.
      file_path_4 <- file.path(
        get_object_dir_path(
          dir_path = mb_dir_path,
          object_type = "familiarModel",
          learner = object@learner,
          fs_method = object@fs_method),
        model_file_name)

      if (file.exists(file_path_4)) return(file_path_4)
    }

    # Using the model_dir_path slot of the ensemble. This takes least
    # precedence, as this might have changed after creating the ensemble method.
    if (!is.na(model_dir_path)) {
      # File is directly located in the given directory.
      file_path_5 <- file.path(model_dir_path, model_file_name)

      if (file.exists(file_path_5)) return(file_path_5)

      # File is located in a subdirectory of model_dir_path.
      file_path_6 <- file.path(
        get_object_dir_path(
          dir_path = model_dir_path,
          object_type = "familiarModel",
          learner = object@learner,
          fs_method = object@fs_method),
        model_file_name)

      if (file.exists(file_path_6)) return(file_path_6)
    }

    # Explicitly return NULL if the model could not be found on any known paths.
    return(NULL)
  }
)



# ..get_model_file_path (missing, familiarEnsemble) ----------------------------
setMethod(
  "..get_model_file_path",
  signature(
    ii = "missing",
    object = "familiarEnsemble"),
  function(ii, object, ...) {
    # Dispatch to ..get_model_file_path.
    return(lapply(
      seq_along(object@model_list),
      ..get_model_file_path,
      object = object,
      ...))
  }
)



# ..update_model_list ----------------------------------------------------------
setMethod(
  "..update_model_list",
  signature(object = "familiarEnsemble"),
  function(
    object,
    dir_path = NULL,
    auto_detach = FALSE) {
    # Determine if models can detach. Models cannot detach if detaching them
    # would lead them to be lost, i.e. there are no files on a known drive
    # location drive.
    if (!..can_detach_models(object = object, dir_path = dir_path)) {
      auto_detach <- FALSE
      object@auto_detach <- FALSE
      object@model_dir_path <- NA_character_
    }

    if (auto_detach || object@auto_detach) object <- detach_models(object)

    for (ii in seq_along(object@model_list)) {
      # Skip if the current entry is an attached familiarModel object.
      if (is(object@model_list[[ii]], "familiarModel")) next

      # Stop if the current entry is not a character.
      if (!is.character(object@model_list[[ii]])) {
        stop(paste0(
          "The current entry in the model list is not a character string ",
          "or a familiarModel object."))
      }

      # Skip if the entry points to a file and not a directory.
      if (file.exists(object@model_list[[ii]]) &&
          !dir.exists(object@model_list[[ii]])) next

      # Identify the file path, if any.
      model_file_path <- ..get_model_file_path(
        ii = ii,
        object = object,
        dir_path = dir_path)

      # If there is a file path, add this to the model list, and update
      # the model_dir_path attribute.
      if (!is.null(model_file_path)) {
        object@model_list[[ii]] <- model_file_path
        object@model_dir_path <- dirname(model_file_path)
      }
    }

    # Check if the models are either attached or are located on a known
    # drive location.
    if (length(object@model_list) > 0) {
      model_exists <- sapply(
        object@model_list,
        function(list_entry) {
          if (is(list_entry, "familiarModel")) {
            return(TRUE)
          } else if (file.exists(list_entry)) {
            return(TRUE)
          }
          return(FALSE)
        })
      
      # Throw an error if any model does not exist.
      if (all(!model_exists)) {
        stop(paste0(
          "None of the models could be found: ",
          paste_s(unlist(object@model_list)),
          ". \n\nThis is likely because the models are no longer found in the ",
          "same location as they were created. ",
          "Use the update_model_dir_path method to update the path for the ",
          "directory containing the models."))
      }

      if (any(!model_exists)) {
        stop(paste0(
          "The following models in the ensemble could not be found: ",
          paste_s(unlist(object@model_list[!model_exists])), "."))
      }
    }

    # Check the model_dir_path slot if auto_detach is on. In that case
    # model_dir_path is required to find the models.
    if ((auto_detach || object@auto_detach) && length(object@model_list) > 0) {
      # Check if all models are attached, because in that case we may still need
      # to determine the drive location.
      if (is_model_loaded(object)) {
        # Identify the file path, if any.
        model_file_path <- ..get_model_file_path(
          ii = 1,
          object = object, 
          dir_path = dir_path)

        # Set the model_file_path explicitly.
        if (!is.null(model_file_path)) object@model_dir_path <- dirname(model_file_path)
      }

      # Check that a model directory path has been set and exists.
      if (is.na(object@model_dir_path)) stop("The model directory could not be found.")
      if (!dir.exists(object@model_dir_path)) stop("The model directory could not be found.")
    }

    return(object)
  }
)



# ..can_detach_models (numeric, familiarEnsemble) ------------------------------
setMethod(
  "..can_detach_models",
  signature(
    ii = "numeric",
    object = "familiarEnsemble"),
  function(ii, object, dir_path = NULL) {
    # Check whether a model can be detached without losing it. We do this by
    # checking whether a valid file path can be generated. If not,
    # ..get_model_file_path will return NULL.
    model_file_path <- ..get_model_file_path(
      ii = ii, 
      object = object, 
      dir_path = dir_path)

    return(!is.null(model_file_path))
  }
)



# ..can_detach_models (missing, familiarEnsemble) ------------------------------
setMethod(
  "..can_detach_models",
  signature(
    ii = "missing",
    object = "familiarEnsemble"),
  function(ii, object, dir_path = NULL) {
    # Check if there are any models in the ensemble.
    if (length(object@model_list) > 0) {
      # Check whether a model can be detached without losing it.
      can_detach <- sapply(
        seq_along(object@model_list),
        ..can_detach_models,
        object = object,
        dir_path = dir_path)

      # Return TRUE when all models can be detached.
      return(all(can_detach))
      
    } else {
      return(TRUE)
    }
  }
)



# update_model_dir_path (generic) ----------------------------------------------

#' @title Updates model directory path for ensemble objects.
#'
#' @description Updates the model directory path of a `familiarEnsemble` object.
#'
#' @param object A `familiarEnsemble` object, or one or more `familiarModel`
#'  objects that will be internally converted to a `familiarEnsemble` object.
#'  Paths to such objects can also be provided.
#' @param dir_path Path to the directory where models are stored.
#' @param ... Unused arguments.
#'
#' @details Ensemble models created by familiar are often written to a directory
#'  on a local drive or network. In such cases, the actual models are detached,
#'  and paths to the models are stored instead. When the models are moved from
#'  their original location, they can no longer be found and attached to the
#'  ensemble. This method allows for pointing to the new directory containing
#'  the models.
#'
#' @return A `familiarEnsemble` object.
#' @exportMethod update_model_dir_path
#' @md
#' @rdname update_model_dir_path-methods
setGeneric(
  "update_model_dir_path",
  function(object, dir_path, ...) {
    standardGeneric("update_model_dir_path")
  } 
)



## update_model_dir_path (familiarEnsemble) ------------------------------------

#' @rdname update_model_dir_path-methods
setMethod(
  "update_model_dir_path",
  signature(object = "familiarEnsemble"),
  function(object, dir_path) {
    # Check if the directory indicated by dir_path exists.
    if (!dir.exists(dir_path)) {
      # Check whether a path to a file may have accidentally been
      # provided.
      if (file.exists(dir_path)) {
        dir_path <- dirname(dir_path)
        
      } else {
        stop(paste0(
          "The new model directory does not exist, or cannot be accessed. ",
          "Found: ", dir_path))
      }
    }

    # Assign to attribute slot.
    object@model_dir_path <- dir_path

    return(object)
  }
)


## update_model_dir_path(ANY) --------------------------------------------------

#' @rdname update_model_dir_path-methods
setMethod(
  "update_model_dir_path",
  signature(object = "ANY"),
  function(object, dir_path) {
    # Attempt to convert object to familiar ensemble.
    object <- as_familiar_ensemble(object)

    # Update path to model directory
    return(update_model_dir_path(
      object = object,
      dir_path = dir_path))
  }
)


# load_models ------------------------------------------------------------------
setMethod(
  "load_models",
  signature(object = "familiarEnsemble"),
  function(
    object,
    dir_path = NULL,
    suppress_auto_detach = FALSE, 
    drop_untrained = FALSE) {
    # Skip if there no models on the list.
    if (length(object@model_list) == 0) return(object)

    # Update model list as a precaution. This also checks that models
    # can actually be attached.
    object <- ..update_model_list(
      object = object,
      dir_path = dir_path)

    # Do not attach models if auto_detach is set to TRUE.
    if (!object@auto_detach || suppress_auto_detach) {
      object@model_list <- ..get_model(object = object)
    }

    # Drop models that were not trained.
    if (drop_untrained) {
      # Determine which models have been trained.
      trained_model_mask <- sapply(object@model_list, model_is_trained)

      # Drop untrained models.
      object@model_list <- object@model_list[trained_model_mask]
    }

    return(object)
  }
)



# is_model_loaded --------------------------------------------------------------
setMethod(
  "is_model_loaded",
  signature(object = "familiarEnsemble"),
  function(object) {
    if (length(object@model_list) > 0 && !object@auto_detach) {
      # Check that all models are present.
      return(all(sapply(object@model_list, is, class2 = "familiarModel")))
      
    } else if (length(object@model_list) > 0 & object@auto_detach) {
      # Return TRUE if all models are dynamically loaded.
      return(TRUE)
      
    } else {
      # If there are no models, return TRUE.
      return(TRUE)
    }
  }
)


# detach_models ----------------------------------------------------------------
setMethod(
  "detach_models",
  signature(object = "familiarEnsemble"),
  function(object) {
    # Unload the models in the familiarEnsemble
    model_list <- object@model_list

    # Iterate over the entries in the model list.
    for (ii in seq_along(object@model_list)) {
      # Check if the entry contains a familiarModel object that can be detached.
      if (is(object@model_list[[ii]], "familiarModel")) {
        # Check if the model can be detached.
        if (..can_detach_models(ii = ii, object = object)) {
          # Get the model file name.
          model_file_name <- ..get_model_file_path(
            ii = ii,
            object = object)

          # Update the entry
          model_list[[ii]] <- model_file_name
        }
      }
    }

    # Attach the model list to the object and return the object.
    object@model_list <- model_list

    return(object)
  }
)



# add_model_name (ANY, familiarEnsemble) ---------------------------------------
setMethod(
  "add_model_name",
  signature(
    data = "ANY",
    object = "familiarEnsemble"),
  function(data, object) {
    
    if (is_empty(data)) return(NULL)

    ..error_reached_unreachable_code(
      "add_model_name,any,familiarEnsemble: no method for non-empty data.")
  }
)


# add_model_name (familiarDataElement, familiarEnsemble) -----------------------
setMethod(
  "add_model_name",
  signature(
    data = "familiarDataElement",
    object = "familiarEnsemble"),
  function(data, object) {
    # Determine the model name
    if (length(object@name) == 0) {
      model_name <- get_object_name(object = object, abbreviated = TRUE)
    } else {
      model_name <- object@name
    }

    if (is.null(data@identifiers)) {
      data@identifiers <- list("ensemble_model_name" = model_name)
    } else {
      data@identifiers[["ensemble_model_name"]] <- model_name
    }

    return(data)
  }
)


# set_object_name (familiarEnsemble) -------------------------------------------

#' @title Set the name of a `familiarEnsemble` object.
#'
#' @description Set the `name` slot using the object name.
#'
#' @param x A `familiarEnsemble` object.
#'
#' @return A `familiarEnsemble` object with a generated or a provided name.
#' @md
#' @keywords internal
setMethod(
  "set_object_name",
  signature(x = "familiarEnsemble"),
  function(x, new = NULL) {
    
    if (x@project_id == 0 && is.null(new)) {
      # Generate a random object name. A project_id of 0 means that the objects
      # was auto-generated (i.e. through object conversion). We randomly
      # generate characters and add a time stamp, so that collision is
      # practically impossible.
      slot(object = x, name = "name") <- paste0(
        as.character(as.numeric(format(Sys.time(), "%H%M%S"))),
        "_", rstring(n = 20L)
      )
    } else if (is.null(new)) {
      # Generate a sensible object name.
      slot(object = x, name = "name") <- get_object_name(object = x)
      
    } else {
      slot(object = x, name = "name") <- new
    }

    return(x)
  }
)



# get_object_name (ensemble) ---------------------------------------------------
setMethod(
  "get_object_name",
  signature(object = "familiarEnsemble"),
  function(object, abbreviated = FALSE) {
    # Extract data and run id
    ensemble_data_id <- object@run_table$ensemble_data_id
    ensemble_run_id <- object@run_table$ensemble_run_id

    if (abbreviated) {
      # Create an abbreviated name
      model_name <- paste0(
        "ensemble", ".", ensemble_data_id, ".", ensemble_run_id)
      
    } else {
      # Create the full name of the model
      model_name <- get_object_file_name(
        learner = object@learner,
        fs_method = object@fs_method,
        project_id = object@project_id,
        data_id = ensemble_data_id,
        run_id = ensemble_run_id,
        object_type = "familiarEnsemble",
        is_ensemble = TRUE,
        with_extension = FALSE
      )
    }

    return(model_name)
  }
)

# model_is_trained (ensemble) --------------------------------------------------
setMethod(
  "model_is_trained",
  signature(object = "familiarEnsemble"),
  function(object) {
    # Check if a model was trained
    if (is.null(object@model_list)) {
      # Check if a model is present
      return(FALSE)
      
    } else if (length(object@model_list) == 0) {
      # No models were attached
      return(FALSE)
      
    } else {
      # Iterate over the models and check if any was trained
      return(any(sapply(object@model_list, model_is_trained)))
    }
  }
)


# add_package_version (ensemble) -----------------------------------------------
setMethod(
  "add_package_version",
  signature(object = "familiarEnsemble"),
  function(object) {
    # Set version of familiar
    return(.add_package_version(object = object))
  }
)

# save (ensemble) --------------------------------------------------------------
setMethod(
  "save", signature(list = "familiarEnsemble", file = "character"),
  function(list, file) {
    .save(object = list, dir_path = file)
  }
)



.report_ensemble_models <- function(object) {
  # Determine how many models are trained.
  model_trained <- sapply(object@model_list, model_is_trained)
  
  # Determine how many models are naive
  model_naive <- sapply(object@model_list, is, class2 = "familiarNaiveModel")
  
  # Determine numbers of models and type.
  n_models <- length(object@model_list)
  n_models_naive <- sum(model_naive)
  n_models_trained <- sum(model_trained)
  
  message_str <- paste0(
    "The ensemble contains ", n_models,
    ifelse(n_models == 1, " model", " models"))
  
  if (n_models == 1) {
    # Ensemble contains a single model.
    
    if (n_models_naive == 0 && n_models_trained == 1) {
      message_str <- c(
        message_str,
        paste0(" which was successfully trained."))
      
    } else if (n_models_naive == 1) {
      message_str <- c(
        message_str,
        paste0(" which was successfully trained as a naive model."))
      
    } else {
      message_str <- c(
        message_str,
        paste0(" which failed to successfully train."))
    }
  } else if (n_models_trained > 0) {
    # Ensemble contains multiple trained models.
    
    message_str <- c(message_str, paste0(
      ". Of these models, ", n_models_trained,
      ifelse(n_models_trained == 1, " model was", " models were"),
      " successfully trained, of which ", n_models_naive,
      ifelse(n_models_naive == 1, " model was", " models were"),
      " trained as a naive model."))
    
    if (n_models > n_models_trained) {
      n_models_untrained <- n_models - n_models_trained
      
      message_str <- c(message_str, paste0(
        " The remaining ", n_models_untrained,
        ifelse(n_models_untrained == 1, " model", " models"),
        " failed to successfully train."))
    }
    
  } else {
    # Ensemble contains only models that failed to train.
    message_str <- c(message_str, ". All models failed to successfully train.")
  }
  
  return(paste0(message_str, collapse = ""))
}



.get_available_stratification_ensemble_methods <- function() {
  return(c("ensemble_mode", "ensemble_mean", "mean_threshold", "median_threshold"))
}

Try the familiar package in your browser

Any scripts or data that you put into this service are public.

familiar documentation built on Sept. 30, 2024, 9:18 a.m.