Nothing
# Copyright 2019 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and limitations under the License.
#' @title Add rolling n-day average column(s) to daily flows
#'
#' @description Adds selected n-day rolling means to a daily streamflow data set. Based on selected n-days and alignment, the rolling
#' mean for a given day is obtained by averaging the adjacent dates of daily mean values. For example, rolling days of \code{'7'}
#' and \code{'right'} alignment would obtain a mean of the given and previous 6 days of daily mean flow.
#'
#' @inheritParams calc_annual_stats
#' @param roll_days Numeric values of the number of days to apply a rolling mean. Default \code{c(3,7,30)}.
#'
#' @return A data frame of the source data with an additional column(s):
#' \item{QnDay}{rolling means of the n-day flow values of the designated date and adjacent dates, direction of mean specified by roll_align}
#' Default additional columns:
#' \item{Q3Day}{rolling means of the 3-day flow values of the designated date and previous 2 days (roll_align = "right")}
#' \item{Q7Day}{rolling means of the 7-day flow values of the designated date and previous 6 days (roll_align = "right")}
#' \item{Q30Day}{rolling means of the 30-day flow values of the designated date and previous 29 days (roll_align = "right")}
#'
#' @examples
#' # Run if HYDAT database has been downloaded (using tidyhydat::download_hydat())
#' if (file.exists(tidyhydat::hy_downloaded_db())) {
#'
#' # Add default 3, 7, and 30-day rolling mean columns, with "right" alignment
#' add_rolling_means(station_number = "08NM116")
#'
#' # Add custom 5 and 10-day rolling mean columns
#' add_rolling_means(station_number = "08NM116",
#' roll_days = c(5,10))
#'
#' # Add default 3, 7, and 30-day rolling mean columns, with "left" alignment
#' add_rolling_means(station_number = "08NM116",
#' roll_align = "left")
#'
#' }
#' @export
add_rolling_means <- function(data,
dates = Date,
values = Value,
groups = STATION_NUMBER,
station_number,
roll_days = c(3,7,30),
roll_align = "right"){
## ARGUMENT CHECKS
## ---------------
if (missing(data)) {
data <- NULL
}
if (missing(station_number)) {
station_number <- NULL
}
rolling_days_checks(roll_days, roll_align, multiple = TRUE)
## FLOW DATA CHECKS AND FORMATTING
## -------------------------------
# Check if data is provided
flow_data <- flowdata_import(data = data, station_number = station_number)
# Save the original columns from the flow_data to remove added columns
orig_cols <- names(flow_data)
# Get groups of flow_data to return after
flow_data_groups <- dplyr::group_vars(flow_data)
flow_data <- dplyr::ungroup(flow_data)
# Check and rename columns
flow_data <- format_all_cols(data = flow_data,
dates = as.character(substitute(dates)),
values = as.character(substitute(values)),
groups = as.character(substitute(groups)),
rm_other_cols = FALSE)
## ADD ROLLING MEANS
## -----------------
# Loop through each station number, and add rolling means
flow_data_new <- flow_data[0,]
for (stn in unique(flow_data$STATION_NUMBER)) {
# Filter for station number
flow_data_stn <- dplyr::filter(flow_data, STATION_NUMBER == stn)
flow_data_stn <- flow_data_stn[order(flow_data_stn$Date), ]
dates_list <- c(flow_data_stn$Date)
# fill in missing dates to ensure means roll over consecutive days
flow_data_stn <- fill_missing_dates(data = flow_data_stn)
# Add rolling means
for (x in unique(roll_days)) {
flow_data_stn[, paste0("Q", x, "Day")] <- RcppRoll::roll_mean(flow_data_stn$Value, n = x, fill = NA, align = roll_align)
}
# Return flow_data_stn to original dates
flow_data_stn <- dplyr::filter(flow_data_stn, Date %in% dates_list)
# Append to flow_data
flow_data_new <- dplyr::bind_rows(flow_data_new, flow_data_stn)
}
flow_data <- flow_data_new
## Reformat to original names and groups
## -------------------------------------
# Return the original names of the Date and Value columns
names(flow_data)[names(flow_data) == "STATION_NUMBER"] <- as.character(substitute(groups))
names(flow_data)[names(flow_data) == "Date"] <- as.character(substitute(dates))
names(flow_data)[names(flow_data) == "Value"] <- as.character(substitute(values))
# Remove the STATION_NUMBER columns if one wasn't in flowdata originally
if(!as.character(substitute(groups)) %in% orig_cols) {
flow_data <- dplyr::select(flow_data, -STATION_NUMBER)
}
# Regroup by the original groups
flow_data <- dplyr::group_by(flow_data, dplyr::across(dplyr::all_of(flow_data_groups)))
#flow_data <- dplyr::group_by_at(flow_data, dplyr::vars(flow_data_groups))
dplyr::as_tibble(flow_data)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.