Nothing
######################################################################
## These functions are minor modifications or directly copied from the
## glmnet package:
## Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010).
## Regularization Paths for Generalized Linear Models via
## Coordinate Descent.
## Journal of Statistical Software, 33(1), 1-22.
## URL http://www.jstatsoft.org/v33/i01/.
## The reason they are copied here is because they are internal functions
## and hence are not exported into the global environment.
## The original comments and header are preserved.
cv.survpath=function(outlist,lambda,x,y,d,foldid){
nfolds=max(foldid)
cvraw=matrix(NA,nfolds,length(lambda))
for(i in seq(nfolds)){
which=foldid==i
fitobj=outlist[[i]]
coefmat=predict(fitobj,type="coeff")
plfull=survpath.deviance(x=x,y=y,d=d,beta=coefmat)
plminusk=survpath.deviance(x=x[!which,],y=y[!which],d=d[!which],beta=coefmat)
cvraw[i,seq(along=plfull)]=plfull-plminusk
}
N=nfolds - apply(is.na(cvraw),2,sum)
weights=as.vector(tapply(d,foldid,sum))
cvraw=cvraw/weights
cvm=apply(cvraw,2,weighted.mean,w=weights,na.rm=TRUE)
cvsd=sqrt(apply(scale(cvraw,cvm,FALSE)^2,2,weighted.mean,w=weights,na.rm=TRUE)/(N-1))
list(cvm=cvm,cvsd=cvsd,name="Partial-Likelihood Deviance")
}
survpath.deviance=function(x,y,d,beta=NULL){
storage.mode(x)="double"
y=as.double(y)
d=as.double(d)
nobs=as.integer(length(y))
nvars=as.integer(ncol(x))
if(is.null(beta)){
beta=double(0)
nvec=as.integer(1)
nvars=as.integer(0)
}
else{
beta=as.matrix(beta)
nvec=as.integer(ncol(beta))
}
fit=.Fortran("OBJ",nobs,nvars,x,y,d,beta,nvec,flog=double(nvec),
PACKAGE="fastcox")
2*fit$flog*nobs
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.