LMDC.select | R Documentation |
LMDC.select function selects impact points of functional predictior using
local maxima distance correlation (LMDC) for a scalar response given.
LMDC.regre function fits a multivariate regression method using the selected
impact points like covariates for a scalar response.
LMDC.select(
y,
covar,
data,
tol = 0.06,
pvalue = 0.05,
plot = FALSE,
local.dc = TRUE,
smo = FALSE,
verbose = FALSE
)
LMDC.regre(
y,
covar,
data,
newdata,
pvalue = 0.05,
method = "lm",
par.method = NULL,
plot = FALSE,
verbose = FALSE
)
y |
name of the response variable. |
covar |
vector with the names of the covaviables (or points of impact)
with length |
data |
data frame with length n rows and at least p + 1 columns, containing the scalar response and the potencial p covaviables (or points of impact) in the model. |
tol |
Tolerance value for distance correlation and imapct point. |
pvalue |
pvalue of bias corrected distance correlation t-test. |
plot |
logical value, if TRUE plots the distance correlation curve for each covariate in multivariate case and in each discretization points (argvals) in the functional case. |
local.dc |
Compute local distance correlation. |
smo |
logical. If TRUE, the curve of distance correlation computed in the impact points is smoothed using B-spline representation with a suitable number of basis elements. |
verbose |
print iterative and relevant steps of the procedure. |
newdata |
An optional data frame in which to look for variables with which to predict. |
method |
Name of regression method used, see details. This argument is used in do.call function like "what" argument. |
par.method |
List of parameters used to call the method. This argument is used in do.call function like "args" argument. |
String of characters corresponding to the name of the regression method called. Model available options:
"lm"
: Step-wise lm regression model (uses lm function, stats
package). Recommended for linear models, test linearity using.
flm.test
function.
"gam"
: Step-wise gam regression model (uses gam function, mgcv package).
Recommended for non-linear models.
Models that use the indicated function of the required package:
"svm"
: Support vector machine (svm function, e1071 package).
"knn"
: k-nearest neighbor regression (knnn.reg function, FNN package).
"lars"
: Least Angle Regression using Lasso (lars function, lars
package).
"glmnet"
: Lasso and Elastic-Net Regularized Generalized Linear Models
(glmnet and cv.glmnet function, glmnet package).
"rpart"
: Recursive partitioning for regression a (rpart function, rpart package).
"flam"
: Fit the Fused Lasso Additive Model for a Sequence of Tuning
Parameters (flam function, flam package).
"novas"
: NOnparametric VAriable Selection (code available in
https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NOVAS/novas-routines.R).
"cosso"
: Fit Regularized Nonparametric Regression Models Using COSSO
Penalty (cosso function, cosso package).
"npreg"
: kernel regression estimate of a one (1) dimensional dependent
variable on p-variate explanatory data (npreg function, np package).
"mars"
: Multivariate adaptive regression splines (mars function, mda
package).
"nnet"
: Fit Neural Networks (nnet function, nnet package).
"lars"
: Fits Least Angle Regression, Lasso and Infinitesimal Forward
Stagewise regression models (lars function, lars package).
LMDC.select |
function returns a list of two elements: |
cor |
the value of distance correlation for each covariate. |
maxLocal |
index or locations of local maxima distance correlations. |
LMDC.regre |
function returns a list of folowing elements: |
model |
object corresponding to the estimated method using the selected variables. |
xvar |
names of selected variables (impact points). |
edf |
effective degrees of freedom. |
nvar |
number of selected variables (impact points). |
Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Ordonez, C., Oviedo de la Fuente, M., Roca-Pardinas, J., Rodriguez-Perez, J. R. (2018). Determining optimum wavelengths for leaf water content estimation from reflectance: A distance correlation approach. Chemometrics and Intelligent Laboratory Systems. 173,41-50 \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.chemolab.2017.12.001")}.
See Also as: lm, gam,
dcor.xy
.
## Not run:
data(tecator)
absorp=fdata.deriv(tecator$absorp.fdata,2)
ind=1:129
x=absorp[ind,]
y=tecator$y$Fat[ind]
newx=absorp[-ind,]
newy=tecator$y$Fat[-ind]
## Functional PC regression
res.pc=fregre.pc(x,y,1:6)
pred.pc=predict(res.pc,newx)
# Functional regression with basis representation
res.basis=fregre.basis.cv(x,y)
pred.basis=predict(res.basis[[1]],newx)
# Functional nonparametric regression
res.np=fregre.np.cv(x,y)
pred.np=predict(res.np,newx)
dat <- data.frame("y"=y,x$data)
newdat <- data.frame("y"=newy,newx$data)
res.gam=fregre.gsam(y~s(x),data=list("df"=dat,"x"=x))
pred.gam=predict(res.gam,list("x"=newx))
dc.raw <- LMDC.select("y",data=dat, tol = 0.05, pvalue= 0.05,
plot=F, smo=T,verbose=F)
covar <- paste("X",dc.raw$maxLocal,sep="")
# Preselected design/impact points
covar
ftest<-flm.test(dat[,-1],dat[,"y"], B=500, verbose=F,
plot.it=F,type.basis="pc",est.method="pc",p=4,G=50)
if (ftest$p.value>0.05) {
# Linear relationship, step-wise lm is recommended
out <- LMDC.regre("y",covar,dat,newdat,pvalue=.05,
method ="lm",plot=F,verbose=F)
} else {
# Non-Linear relationship, step-wise gam is recommended
out <- LMDC.regre("y",covar,dat,newdat,pvalue=.05,
method ="gam",plot=F,verbose=F) }
# Final design/impact points
out$xvar
# Predictions
mean((newy-pred.pc)^2)
mean((newy-pred.basis)^2)
mean((newy-pred.np)^2)
mean((newy-pred.gam)^2)
mean((newy-out$pred)^2)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.