View source: R/fregre.gsam.vs.R
fregre.gsam.vs | R Documentation |
Computes functional GAM model between functional covariates (X(t_1),...,X(t_q)) and non functional covariates (Z1,...,Zp) with a scalar response Y.
fregre.gsam.vs( data = list(), y, include = "all", exclude = "none", family = gaussian(), weights = NULL, basis.x = NULL, numbasis.opt = FALSE, kbs, dcor.min = 0.1, alpha = 0.05, par.model, xydist, trace = FALSE )
data |
List that containing the variables in the model.
"df" element is a data.frame containing the response and scalar covariates
(numeric and factors variables are allowed). Functional covariates of class
|
y |
Caracter string with the name of the scalar response variable. |
include |
vector with the name of variables to use. By default |
exclude |
vector with the name of variables to not use. By default |
family |
a description of the error distribution and link function to
be used in the model. This can be a character string naming a family
function, a family function or the result of a call to a family function.
(See |
weights |
weights |
basis.x |
Basis parameter options
|
numbasis.opt |
Logical, if |
kbs |
The dimension of the basis used to represent the smooth term. The default depends on the number of variables that the smooth is a function of. |
dcor.min |
Threshold for a variable to be entered into the model. X is discarded if the distance correlation R(X,e)< dcor.min (e is the residual of previous steps). |
alpha |
Alpha value for testing the independence among covariate X and residual
e in previous steps. By default is |
par.model |
Model parameters. |
xydist |
List with the inner distance matrices of each variable (all potential covariates and the response). |
trace |
Interactive Tracing and Debugging of Call. |
This function is an extension of the functional generalized spectral additive
regression models: fregre.gsam
where the E[Y|X,Z] is related to the
linear prediction η via a link function g(.) with integrated
smoothness estimation by the smooth functions f(.).
E[Y|X,Z]=η=g^{-1}(α+∑_i f_i(Z_{i})+∑_k^q∑_{j=1}^{k_q}{f_j^k(ξ_j^k)})
where ξ_j^k is the coefficient of the basis function expansion of X^k, (in PCA analysis ξ_j^k is the score of the j-functional PC of X^k.
The smooth functions f(.) can be added to the right hand side of the formula
to specify that the linear predictor depends on smooth functions of predictors using smooth
terms s
and te
as in gam
(or linear functionals of
these as Zβ and < X(t),β(t) > in fregre.glm
).
Return an object corresponding to the estimated additive mdoel using
the selected variables (ame output as thefregre.gsam
function) and the following elements:
gof
, the goodness of fit for each step of VS algorithm.
i.predictor
, vector
with 1 if the variable is selected, 0 otherwise.
ipredictor
, vector
with the name of selected variables (in order of selection)
dcor
, the value of distance correlation for each potential covariate and the residual of the model in each step.
If the formula only contains a non functional explanatory variables (multivariate covariates),
the function compute a standard gam
procedure.
Manuel Feb-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Febrero-Bande, M., Gonz\'alez-Manteiga, W. and Oviedo de la Fuente, M. Variable selection in functional additive regression models, (2018). Computational Statistics, 1-19. DOI: doi: 10.1007/s00180-018-0844-5
See Also as: predict.fregre.gsam
and summary.gam
.
Alternative methods: fregre.glm
, fregre.gsam
and fregre.gkam
.
## Not run: data(tecator) x=tecator$absorp.fdata x1 <- fdata.deriv(x) x2 <- fdata.deriv(x,nderiv=2) y=tecator$y$Fat xcat0 <- cut(rnorm(length(y)),4) xcat1 <- cut(tecator$y$Protein,4) xcat2 <- cut(tecator$y$Water,4) ind <- 1:165 dat <- data.frame("Fat"=y, x1$data, xcat1, xcat2) ldat <- ldata("df"=dat[ind,],"x"=x[ind,],"x1"=x1[ind,],"x2"=x2[ind,]) # 3 functionals (x,x1,x2), 3 factors (xcat0, xcat1, xcat2) # and 100 scalars (impact poitns of x1) # Time consuming res.gam0 <- fregre.gsam.vs(data=ldat,y="Fat" ,exclude="x2",numbasis.opt=T) # All the covariates summary(res.gam0) res.gam0$ipredictors res.gam1 <- fregre.gsam.vs(data=ldat,y="Fat") # All the covariates summary(res.gam1) res.gam1$ipredictors covar <- c("xcat0","xcat1","xcat2","x","x1","x2") res.gam2 <- fregre.gsam.vs(data=ldat, y="Fat", include=covar) summary(res.gam2) res.gam2$ipredictors res.gam2$i.predictor res.gam3 <- fregre.gsam.vs(data=ldat,y="Fat", basis.x=c("type.basis"="pc","numbasis"=10)) summary(res.gam3) res.gam3$ipredictors res.gam4 <- fregre.gsam.vs(data=ldat,y="Fat",include=c("x","x1","x2"), basis.x=c("type.basis"="pc","numbasis"=5),numbasis.opt=T) summary(res.gam4) res.gam4$ipredictors lpc <- list("x"=create.pc.basis(ldat$x,1:4) ,"x1"=create.pc.basis(ldat$x1,1:3) ,"x2"=create.pc.basis(ldat$x2,1:12)) res.gam5 <- fregre.gsam.vs(data=ldat,y="Fat",basis.x=lpc) summary(res.gam5) res.gam6 <- fregre.gsam.vs(data=ldat,y="Fat",basis.x=lpc,numbasis.opt=T) summary(res.gam6) bsp <- create.fourier.basis(ldat$x$rangeval,7) lbsp <- list("x"=bsp,"x1"=bsp,"x2"=bsp) res.gam7 <- fregre.gsam.vs(data=ldat,y="Fat",basis.x=lbsp,kbs=4) summary(res.gam7) # Prediction like fregre.gsam() newldat <- ldata("df"=dat[-ind,],"x"=x[-ind,],"x1"=x1[-ind,], "x2"=x2[-ind,]) pred.gam1 <- predict(res.gam1,newldat) pred.gam2 <- predict(res.gam2,newldat) pred.gam3 <- predict(res.gam3,newldat) pred.gam4 <- predict(res.gam4,newldat) pred.gam5 <- predict(res.gam5,newldat) pred.gam6 <- predict(res.gam6,newldat) pred.gam7 <- predict(res.gam7,newldat) plot(dat[-ind,"Fat"],pred.gam1) points(dat[-ind,"Fat"],pred.gam2,col=2) points(dat[-ind,"Fat"],pred.gam3,col=3) points(dat[-ind,"Fat"],pred.gam4,col=4) points(dat[-ind,"Fat"],pred.gam5,col=5) points(dat[-ind,"Fat"],pred.gam6,col=6) points(dat[-ind,"Fat"],pred.gam7,col=7) pred2meas(newldat$df$Fat,pred.gam1) pred2meas(newldat$df$Fat,pred.gam2) pred2meas(newldat$df$Fat,pred.gam3) pred2meas(newldat$df$Fat,pred.gam4) pred2meas(newldat$df$Fat,pred.gam5) pred2meas(newldat$df$Fat,pred.gam6) pred2meas(newldat$df$Fat,pred.gam7) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.