# R/deprecated.R In fdaPDE: Statistical Analysis of Functional and Spatial Data, Based on Regression with PDE Regularization

#### Documented in create.MESH.2Dplot.MESH2Drefine.MESH.2DR_eval.FEMR_eval.FEM.basisR_massR_smooth.FEM.basisR_stiffsmooth.FEM.basissmooth.FEM.PDE.basissmooth.FEM.PDE.sv.basis

#' Deprecated Functions
#'
#' These functions are Deprecated in this release of fdaPDE, they will be
#' marked as Defunct and removed in a future version.
#' @name fdaPDE-deprecated

#' @return A square matrix with the integrals of all the basis' functions pairwise products.
#' The dimension of the matrix is equal to the number of the nodes of the mesh.
#' @rdname fdaPDE-deprecated
#' @export

R_mass=function(FEMbasis)
{
.Deprecated("smooth.FEM",msg = 'This function is deprecated and will soon be removed. To perform smooth regression please refer to smooth.FEM')
nodes = FEMbasis$mesh$nodes
triangles = FEMbasis$mesh$triangles
detJ = FEMbasis$detJ order = FEMbasis$order

nele  = dim(triangles)
nnod  = dim(nodes)

if (order < 1 || order > 2){
stop("ORDER not 1 or 2")
}

K0M = NULL

if (order ==2)
{
#  the integrals of products of basis functions for master element:

K0M = matrix(c( 6, -1, -1, -4,  0,  0,
-1,  6, -1,  0, -4,  0,
-1, -1,  6,  0,  0, -4,
-4,  0,  0, 32, 16, 16,
0, -4,  0, 16, 32, 16,
0,  0, -4, 16, 16, 32), ncol=6, nrow=6, byrow=T)/360
}else if (order == 1)
{
#  the integrals of products of basis functions for master element:
K0M = matrix( c( 2,  1,  1,
1,  2,  1,
1 , 1,  2), ncol=3, nrow=3, byrow=T) / 24

}

# assemble the mass matrix
K0 = matrix(0,nrow=nnod,ncol=nnod)
for (el in 1:nele)
{
ind = triangles[el,]
K0[ind,ind] = K0[ind,ind] + K0M * detJ[el]
}

K0
}

#' @return A square matrix with the integrals of all the basis functions' gradients pairwise dot products.
#' The dimension of the matrix is equal to the number of the nodes of the mesh.
#' @rdname fdaPDE-deprecated
#' @export

R_stiff= function(FEMbasis)
{
.Deprecated("smooth.FEM",msg = 'This function is deprecated and will soon be removed. To perform smooth regression please refer to smooth.FEM')

nodes = FEMbasis$mesh$nodes
triangles = FEMbasis$mesh$triangles

nele  = dim(triangles)[]
nnod  = dim(nodes)[]
detJ     = FEMbasis$detJ order = FEMbasis$order
metric = FEMbasis$metric KXX = NULL KXY = NULL KYY = NULL if (order < 1 || order > 2){ stop("ORDER not 1 or 2") } if (order == 2) { # values of K1 for master elements KXX = matrix( c( 3, 1, 0, 0, 0,-4, 1, 3, 0, 0, 0,-4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8,-8, 0, 0, 0, 0,-8, 8, 0, -4,-4, 0, 0, 0, 8), ncol=6, nrow=6, byrow=T)/6 KXY = matrix(c( 3, 0, 1, 0,-4, 0, 1, 0,-1, 4, 0,-4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4,-4,-4, 0, 0,-4,-4, 4, 4, -4, 0, 0,-4, 4, 4), ncol=6, nrow=6, byrow=T)/6 KYY = matrix( c( 3, 0, 1, 0,-4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0,-4, 0, 0, 0, 0, 8, 0,-8, -4, 0,-4, 0, 8, 0, 0, 0, 0,-8, 0, 8), ncol=6, nrow=6, byrow=T)/6 }else if (order == 1) { KXX = matrix( c( 1, -1, 0, -1, 1, 0, 0, 0, 0), ncol=3, nrow=3, byrow=T) /2 KXY = matrix( c( 1, 0, -1, -1, 0, 1, 0, 0, 0), ncol=3, nrow=3, byrow=T) /2 KYY = matrix( c( 1, 0, -1, 0, 0, 0, -1, 0, 1), ncol=3, nrow=3, byrow=T) /2 } # assemble the stiffness matrix K1 = matrix(0,nrow=nnod,ncol=nnod) for (el in 1:nele) { ind = triangles[el,] K1M = (metric[el,1,1]*KXX + metric[el,1,2]*KXY + metric[el,2,1]*t(KXY) + metric[el,2,2]*KYY) K1[ind,ind] = K1[ind,ind] + K1M*detJ[el] } K1 } #' @param observations A #observations vector with the observed data values over the domain. The locations of the observations can be specified with the \code{locations} argument. #' Otherwise if only the vector of observations is given, these are consider to be located in the corresponding node in the table nodes of the mesh. In this last #' case, an \code{NA} value in the observations vector indicates that there is no observation associated to the corresponding node. #' @param locations A #observations-by-2 matrix where each row specifies the spatial coordinates of the corresponding observations in the vector \code{observations}. #' @param FEMbasis A F\code{EMbasis} object describing the Finite Element basis, as created by \code{\link{create.FEM.basis}}. #' @param lambda A scalar or vector of smoothing parameters. #' @param covariates A #observations-by-#covariates matrix where each row represents the covariates associated with the corresponding observed data value in \code{observations}. #' @param GCV Boolean. If \code{TRUE} the following quantities are computed: the trace of the smoothing matrix, the estimated error standard deviation, and #' the Generalized Cross Validation criterion, for each value of the smoothing parameter specified in \code{lambda}. #' @return A list with the following quantities: #' \item{\code{fit.FEM}}{A \code{FEM} object that represents the fitted spatial field.} #' \item{\code{PDEmisfit.FEM}}{A \code{FEM} object that represents the Laplacian of the estimated spatial field.} #' \item{\code{beta}}{If covariates is not \code{NULL}, a vector of length #covariates with the regression coefficients associated with each covariate.} #' \item{\code{edf}}{If GCV is \code{TRUE}, a scalar or vector with the trace of the smoothing matrix for each value of the smoothing parameter specified in \code{lambda}.} #' \item{\code{stderr}}{If GCV is \code{TRUE}, a scalar or vector with the estimate of the standard deviation of the error for each value of the smoothing parameter specified in \code{lambda}.} #' \item{\code{GCV}}{If GCV is \code{TRUE}, a scalar or vector with the value of the GCV criterion for each value of the smoothing parameter specified in \code{lambda}.} #' @rdname fdaPDE-deprecated #' @export R_smooth.FEM.basis = function(locations, observations, FEMbasis, lambda, covariates = NULL, GCV) { .Deprecated("smooth.FEM",msg = 'This function is deprecated and will soon be removed. To perform smooth regression please refer to smooth.FEM') # Stores the number of nodes of the mesh. This corresponds to the number of elements of the FE basis. numnodes = nrow(FEMbasis$mesh$nodes) if(!is.null(covariates)) { covariates = as.matrix(covariates) } if(!is.null(locations)) { locations <- as.matrix(locations) } # --------------------------------------------------------------- # construct mass matrix K0 # --------------------------------------------------------------- K0 = R_mass(FEMbasis) # --------------------------------------------------------------- # construct stiffness matrix K1 # --------------------------------------------------------------- K1 = R_stiff(FEMbasis) # --------------------------------------------------------------- # construct the penalty matrix P with ones on diagonal at data points # --------------------------------------------------------------- #penalty = numeric(numnodes) #penalty[data[,1]] = 1 #P = diag(penalty,nrow=numnodes) basismat = NULL Lmat = matrix(0,nrow = numnodes, ncol = numnodes) H = NULL Q = NULL if(!is.null(locations)) { basismat = R_eval.FEM.basis(FEMbasis, locations) } if(!is.null(covariates)) { if(!is.null(locations)) { H = covariates %*% ( solve( t(covariates) %*% covariates ) ) %*% t(covariates) }else{ loc_nodes = (1:length(observations))[!is.na(observations)] H = covariates[loc_nodes,] %*% ( solve( t(covariates[loc_nodes,]) %*% covariates[loc_nodes,] ) ) %*% t(covariates[loc_nodes,]) } Q=matrix(0,dim(H), dim(H)) Q = diag(1,dim(H))- H } if(!is.null(locations) && is.null(covariates)) { Lmat = t(basismat) %*% basismat } if(!is.null(locations) && !is.null(covariates)) { Lmat = t(basismat) %*% Q %*% basismat } if(is.null(locations) && is.null(covariates)) { loc_nodes = (1:length(observations))[!is.na(observations)] Lmat[loc_nodes,loc_nodes]=diag(1,length(observations[loc_nodes])) } if(is.null(locations) && !is.null(covariates)) { loc_nodes = (1:length(observations))[!is.na(observations)] Lmat[loc_nodes,loc_nodes] = Q } # --------------------------------------------------------------- # construct vector b for system Ax=b # --------------------------------------------------------------- b = matrix(numeric(numnodes*2),ncol=1) if(!is.null(locations) && is.null(covariates)) { b[1:numnodes,] = t(basismat) %*% observations } if(!is.null(locations) && !is.null(covariates)) { b[1:numnodes,] = t(basismat) %*% Q %*% observations } if(is.null(locations) && is.null(covariates)) { loc_nodes = (1:length(observations))[!is.na(observations)] b[loc_nodes,] = observations[loc_nodes] } if(is.null(locations) && !is.null(covariates)) { loc_nodes = (1:length(observations))[!is.na(observations)] b[loc_nodes,] = Q %*% observations[loc_nodes] } #print(b) # --------------------------------------------------------------- # construct matrix A for system Ax=b. # --------------------------------------------------------------- bigsol = list(solutions = matrix(nrow = 2*numnodes, ncol = length(lambda)), edf = vector(mode="numeric",length = length(lambda))) for(i in 1: length(lambda)) { A = rbind(cbind(Lmat, -lambda[i]*K1), cbind(K1, K0)) #print(A) # solve system bigsol[][,i] = solve(A,b) if(GCV == TRUE) { S = solve(Lmat + lambda[i] * K1 %*% solve(K0) %*% K1) if(is.null(locations)) { loc_nodes = (1:length(observations))[!is.na(observations)] if(is.null(covariates)) { bigsol[][i] = sum(diag(S[loc_nodes,loc_nodes])) }else{ bigsol[][i] = ncol(covariates)+sum(diag(S[loc_nodes,loc_nodes]%*%Q)) } }else{ if(is.null(covariates)) { bigsol[][i] = sum(diag(basismat%*%S[1:numnodes,1:numnodes]%*%t(basismat))) }else{ bigsol[][i] = ncol(covariates)+sum(diag(basismat%*%S[1:numnodes,1:numnodes]%*%t(basismat)%*%Q)) } } }else{ bigsol[][i] = NA } } return(bigsol) } #' @param nderivs A vector of lenght 2 specifying the order of the partial derivatives of the bases to be evaluated. The vectors' entries can #' be 0,1 or 2, where 0 indicates that only the basis functions, and not their derivatives, should be evaluated. #' @return #' A matrix of basis function values. Each row indicates the location where the evaluation has been taken, the column indicates the #' basis function evaluated #' @rdname fdaPDE-deprecated #' @export R_eval.FEM.basis <- function(FEMbasis, locations, nderivs = matrix(0,1,2)) { .Deprecated("eval.FEM") if(length(nderivs) != 2) { stop('NDERIVS not of length 2.') } if(sum(nderivs)>2) { stop('Maximum derivative order is greater than two.') } N = nrow(locations) nbasis = FEMbasis$nbasis

# Augment Xvec and Yvec by ones for computing barycentric coordinates
Pgpts = cbind(matrix(1,N,1),locations[,1],locations[,2])

# Get nodes and index

mesh = FEMbasis$mesh nodes = mesh$nodes
triangles = mesh$triangles order = FEMbasis$order
#nodeindex = params$nodeindex detJ = FEMbasis$detJ

# 1st, 2nd, 3rd vertices of triangles

v1 = nodes[triangles[,1],]
v2 = nodes[triangles[,2],]
v3 = nodes[triangles[,3],]

if(order !=2 && order != 1)
{
stop('ORDER is neither 1 or 2.')
}

# Denominator of change of coordinates chsange matrix

modJ = FEMbasis$detJ ones3 = matrix(1,3,1) modJMat = modJ %*% t(ones3) M1 = cbind(v2[,1]*v3[,2] - v3[,1]*v2[,2], v2[,2] - v3[,2], v3[,1] - v2[,1])/(modJMat) M2 = cbind(v3[,1]*v1[,2] - v1[,1]*v3[,2], v3[,2] - v1[,2], v1[,1] - v3[,1])/(modJMat) M3 = cbind(v1[,1]*v2[,2] - v2[,1]*v1[,2], v1[,2] - v2[,2], v2[,1] - v1[,1])/(modJMat) ind = matrix(0,N,1) for(i in 1:N) { ind[i] = R_insideIndex(mesh, locations[i,]) } evalmat = matrix(0,N,nbasis) for(i in 1:N) { indi = ind[i] if(!is.nan(indi)) { baryc1 = (M1[indi,]*Pgpts[i,]) %*% ones3 baryc2 = (M2[indi,]*Pgpts[i,]) %*% ones3 baryc3 = (M3[indi,]*Pgpts[i,]) %*% ones3 if(order == 2) { if(sum(nderivs) == 0) { evalmat[i,triangles[indi,1]] = 2* baryc1^2 - baryc1 evalmat[i,triangles[indi,2]] = 2* baryc2^2 - baryc2 evalmat[i,triangles[indi,3]] = 2* baryc3^2 - baryc3 evalmat[i,triangles[indi,6]] = 4* baryc1 * baryc2 evalmat[i,triangles[indi,4]] = 4* baryc2 * baryc3 evalmat[i,triangles[indi,5]] = 4* baryc3 * baryc1 } else if(nderivs == 1 && nderivs == 0) { evalmat[i,triangles[indi,1]] = (4* baryc1 - 1) * M1[indi,2] evalmat[i,triangles[indi,2]] = (4* baryc2 - 1) * M2[indi,2] evalmat[i,triangles[indi,3]] = (4* baryc3 - 1) * M3[indi,2] evalmat[i,triangles[indi,6]] = (4* baryc2 ) * M1[indi,2] + 4*baryc1 * M2[indi,2] evalmat[i,triangles[indi,4]] = (4* baryc3 ) * M2[indi,2] + 4*baryc2 * M3[indi,2] evalmat[i,triangles[indi,5]] = (4* baryc1 ) * M3[indi,2] + 4*baryc3 * M1[indi,2] } else if(nderivs == 0 && nderivs == 1) { evalmat[i,triangles[indi,1]] = (4*baryc1 - 1)*M1[indi,3] evalmat[i,triangles[indi,2]] = (4*baryc2 - 1)*M2[indi,3] evalmat[i,triangles[indi,3]] = (4*baryc3 - 1)*M3[indi,3] evalmat[i,triangles[indi,6]] = 4*baryc2*M1[indi,3] + 4*baryc1*M2[indi,3] evalmat[i,triangles[indi,4]] = 4*baryc3*M2[indi,3] + 4*baryc2*M3[indi,3] evalmat[i,triangles[indi,5]] = 4*baryc1*M3[indi,3] + 4*baryc3*M1[indi,3] } else if(nderivs == 1 && nderivs == 1) { evalmat[i,triangles[indi,1]] = 4*M1[indi,2]%*%M1[indi,3]; evalmat[i,triangles[indi,2]] = 4*M2[indi,2]%*%M2[indi,3]; evalmat[i,triangles[indi,3]] = 4*M3[indi,2]%*%M3[indi,3]; evalmat[i,triangles[indi,6]] = 4*M2[indi,2]%*%M1[indi,3] + 4*M2[indi,3]%*%M1[indi,2]; evalmat[i,triangles[indi,4]] = 4*M3[indi,2]%*%M2[indi,3] + 4*M3[indi,3]%*%M2[indi,2]; evalmat[i,triangles[indi,5]] = 4*M1[indi,2]%*%M3[indi,3] + 4*M1[indi,3]%*%M3[indi,2]; } else if(nderivs == 2 && nderivs == 0) { evalmat[i,triangles[indi,1]] = 4*M1[indi,2]%*%M1[indi,2]; evalmat[i,triangles[indi,2]] = 4*M2[indi,2]%*%M2[indi,2]; evalmat[i,triangles[indi,3]] = 4*M3[indi,2]%*%M3[indi,2]; evalmat[i,triangles[indi,6]] = 8*M2[indi,2]%*%M1[indi,2]; evalmat[i,triangles[indi,4]] = 8*M3[indi,2]%*%M2[indi,2]; evalmat[i,triangles[indi,5]] = 8*M1[indi,2]%*%M3[indi,2]; } else if(nderivs == 0 && nderivs == 2) { evalmat[i,triangles[indi,1]] = 4*M1[indi,3]%*%M1[indi,3]; evalmat[i,triangles[indi,2]] = 4*M2[indi,3]%*%M2[indi,3]; evalmat[i,triangles[indi,3]] = 4*M3[indi,3]%*%M3[indi,3]; evalmat[i,triangles[indi,6]] = 8*M2[indi,3]%*%M1[indi,3]; evalmat[i,triangles[indi,4]] = 8*M3[indi,3]%*%M2[indi,3]; evalmat[i,triangles[indi,5]] = 8*M1[indi,3]%*%M3[indi,3]; } else { stop('Inadmissible derivative orders.') } } else { if(sum(nderivs) == 0) { evalmat[i,triangles[indi,1]] = baryc1; evalmat[i,triangles[indi,2]] = baryc2; evalmat[i,triangles[indi,3]] = baryc3; } else if(nderivs == 1 && nderivs == 0) { evalmat[i,triangles[indi,1]] = M1[indi,2]; evalmat[i,triangles[indi,2]] = M1[indi,2]; evalmat[i,triangles[indi,3]] = M1[indi,2]; } else if(nderivs == 0 && nderivs == 1) { evalmat[i,triangles[indi,1]] = M1[indi,3]; evalmat[i,triangles[indi,2]] = M1[indi,3]; evalmat[i,triangles[indi,3]] = M1[indi,3]; } else { stop('Inadmissible derivative orders.') } } } } return(evalmat) } #' @param FEM A \code{FEM} object to be evaluated #' @return #' A matrix of numeric evaluations of the \code{FEM} object. Each row indicates the location where the evaluation has been taken, the column indicates the #' function evaluated. #' @rdname fdaPDE-deprecated #' @export R_eval.FEM <- function(FEM, locations) { .Deprecated("eval.FEM") if (is.vector(locations)) { locations = t(as.matrix(locations)) } N = nrow(locations) # Augment Xvec and Yvec by ones for computing barycentric coordinates Pgpts = cbind(matrix(1,N,1),locations[,1],locations[,2]) # Get nodes and index FEMbasis = FEM$FEMbasis
mesh = FEMbasis$mesh nodes = mesh$nodes
triangles = mesh$triangles coeff = FEM$coeff
nsurf = dim(coeff)

FEMbasis = FEM$FEMbasis order = FEMbasis$order
#nodeindex = params$nodeindex detJ = FEMbasis$detJ

# 1st, 2nd, 3rd vertices of triangles

v1 = nodes[triangles[,1],]
v2 = nodes[triangles[,2],]
v3 = nodes[triangles[,3],]

if(order !=2 && order != 1)
{
stop('ORDER is neither 1 or 2.')
}

# Denominator of change of coordinates chsange matrix

modJ = FEMbasis$detJ ones3 = matrix(1,3,1) modJMat = modJ %*% t(ones3) M1 = cbind(v2[,1]*v3[,2] - v3[,1]*v2[,2], v2[,2] - v3[,2], v3[,1] - v2[,1])/(modJMat) M2 = cbind(v3[,1]*v1[,2] - v1[,1]*v3[,2], v3[,2] - v1[,2], v1[,1] - v3[,1])/(modJMat) M3 = cbind(v1[,1]*v2[,2] - v2[,1]*v1[,2], v1[,2] - v2[,2], v2[,1] - v1[,1])/(modJMat) ind = matrix(0,N,1) for(i in 1:N) { ind[i] = R_insideIndex(mesh, as.numeric(locations[i,])) } evalmat = matrix(NA, nrow=N, ncol=nsurf) for (isurf in 1:nsurf) { for(i in 1:N) { indi = ind[i] if(!is.nan(indi)) { baryc1 = (M1[indi,]*Pgpts[i,]) %*% ones3 baryc2 = (M2[indi,]*Pgpts[i,]) %*% ones3 baryc3 = (M3[indi,]*Pgpts[i,]) %*% ones3 if(order == 2) { c1 = coeff[triangles[indi,1],isurf] c2 = coeff[triangles[indi,2],isurf] c3 = coeff[triangles[indi,3],isurf] c4 = coeff[triangles[indi,6],isurf] c5 = coeff[triangles[indi,4],isurf] c6 = coeff[triangles[indi,5],isurf] fval = c1*(2* baryc1^2 - baryc1) + c2*(2* baryc2^2 - baryc2) + c3*(2* baryc3^2 - baryc3) + c4*(4* baryc1 * baryc2) + c5*(4* baryc2 * baryc3) + c6*(4* baryc3 * baryc1) evalmat[i,isurf] = fval } else { c1 = coeff[triangles[indi,1],isurf] c2 = coeff[triangles[indi,2],isurf] c3 = coeff[triangles[indi,3],isurf] fval = c1*baryc1 + c2*baryc2 + c3*baryc3 evalmat[i,isurf] = fval } } } } return(evalmat) } R_tricoefCal = function(mesh) { # TRICOEFCAL compute the coefficient matrix TRICOEF # required to test of a point is indside a triangle nodes = mesh$nodes
triangles = mesh$triangles ntri = dim(triangles)[] # compute coefficients for computing barycentric coordinates if # needed tricoef = matrix(0, nrow=ntri, ncol=4) tricoef[,1] = nodes[triangles[,1],1]-nodes[triangles[,3],1] tricoef[,2] = nodes[triangles[,2],1]-nodes[triangles[,3],1] tricoef[,3] = nodes[triangles[,1],2]-nodes[triangles[,3],2] tricoef[,4] = nodes[triangles[,2],2]-nodes[triangles[,3],2] detT = matrix((tricoef[,1]*tricoef[,4] - tricoef[,2]*tricoef[,3]),ncol=1) tricoef = tricoef/(detT %*% matrix(1,nrow=1,ncol=4)) return(tricoef) } #' @rdname fdaPDE-deprecated #' @param BC vector with the Dirichlet boundary conditions to be applied. #' @param CPP_CODE Boolean, indicates whether C++ implementation ha sto be used or not. #' @export smooth.FEM.basis<-function(locations = NULL, observations, FEMbasis, lambda, covariates = NULL, BC = NULL, GCV = FALSE, CPP_CODE = TRUE) { .Deprecated("smooth.FEM", package = "fdaPDE") ans=smooth.FEM(locations=locations,observations=observations,FEMbasis=FEMbasis,lambda=lambda, covariates=covariates,BC=BC,GCV=GCV,GCVmethod = 'Exact') ans } #' @param PDE_parameters A list specifying the parameters of the elliptic PDE in the regularizing term. #' @rdname fdaPDE-deprecated #' @export smooth.FEM.PDE.basis<-function(locations = NULL, observations, FEMbasis, lambda, PDE_parameters, covariates = NULL, BC = NULL, GCV = FALSE, CPP_CODE = TRUE) { .Deprecated("smooth.FEM", package = "fdaPDE") ans=smooth.FEM(locations=locations,observations=observations,FEMbasis=FEMbasis,lambda=lambda,PDE_parameters=PDE_parameters,covariates=covariates,BC=BC,GCV=GCV,GCVmethod = 'Exact') ans } #' @rdname fdaPDE-deprecated #' @export smooth.FEM.PDE.sv.basis<-function(locations = NULL, observations, FEMbasis, lambda, PDE_parameters, covariates = NULL, BC = NULL, GCV = FALSE, CPP_CODE = TRUE) { .Deprecated("smooth.FEM", package = "fdaPDE") ans=smooth.FEM(locations=locations,observations=observations,FEMbasis=FEMbasis,lambda=lambda,PDE_parameters=PDE_parameters,covariates=covariates,BC=BC,GCV=GCV,GCVmethod = 'Exact') ans } #' @param nodes A #nodes-by-2 matrix containing the x and y coordinates of the mesh nodes. #' @param nodesattributes A matrix with #nodes rows containing nodes' attributes. #' These are passed unchanged to the output. If a node is added during the triangulation process or mesh refinement, its attributes are computed #' by linear interpolation using the attributes of neighboring nodes. This functionality is for instance used to compute the value #' of a Dirichlet boundary condition at boundary nodes added during the triangulation process. #' @param segments A #segments-by-2 matrix. Each row contains the row's indices in \code{nodes} of the vertices where the segment starts from and ends to. #' Segments are edges that are not splitted during the triangulation process. These are for instance used to define the boundaries #' of the domain. If this is input is NULL, it generates a triangulation over the #' convex hull of the points specified in \code{nodes}. #' @param holes A #holes-by-2 matrix containing the x and y coordinates of a point internal to each hole of the mesh. These points are used to carve holes #' in the triangulation, when the domain has holes. #' @param triangles A #triangles-by-3 (when \code{order} = 1) or #triangles-by-6 (when \code{order} = 2) matrix. #' This option is used when a triangulation is already available. It specifies the triangles giving the row's indices in \code{nodes} of the triangles' vertices and (when \code{nodes} = 2) also if the triangles' edges midpoints. The triangles' vertices and midpoints are ordered as described #' at \cr https://www.cs.cmu.edu/~quake/triangle.highorder.html. #' In this case the function \code{create.MESH.2D} is used to produce a complete MESH2D object. #' @param order Either '1' or '2'. It specifies wether each mesh triangle should be represented by 3 nodes (the triangle' vertices) or by 6 nodes (the triangle's vertices and midpoints). #' These are #' respectively used for linear (order = 1) and quadratic (order = 2) Finite Elements. Default is \code{order} = 1. #' @param verbosity This can be '0', '1' or '2'. It indicates the level of verbosity in the triangulation process. When \code{verbosity} = 0 no message is returned #' during the triangulation. When \code{verbosity} = 2 the triangulation process is described step by step by displayed messages. #' Default is \code{verbosity} = 0. #' @usage create.MESH.2D(nodes, nodesattributes = NA, segments = NA, holes = NA, #' triangles = NA, order = 1, verbosity = 0) #' @return An object of the class MESH2D with the following output: #' \item{\code{nodes}}{A #nodes-by-2 matrix containing the x and y coordinates of the mesh nodes.} #' \item{\code{nodesmarkers}}{A vector of length #nodes, with entries either '1' or '0'. An entry '1' indicates that the corresponding node is a boundary node; an entry '0' indicates that the corresponding node is not a boundary node.} #' \item{\code{nodesattributes}}{nodesattributes A matrix with #nodes rows containing nodes' attributes. #' These are passed unchanged to the output. If a node is added during the triangulation process or mesh refinement, its attributes are computed #' by linear interpolation using the attributes of neighboring nodes. This functionality is for instance used to compute the value #' of a Dirichlet boundary condition at boundary nodes added during the triangulation process.} #' \item{\code{triangles}}{A #triangles-by-3 (when \code{order} = 1) or #triangles-by-6 (when \code{order} = 2) matrix. #' This option is used when a triangulation is already available. It specifies the triangles giving the indices in \code{nodes} of the triangles' vertices and (when \code{nodes} = 2) also if the triangles' edges midpoints. The triangles' vertices and midpoints are ordered as described #' at \cr https://www.cs.cmu.edu/~quake/triangle.highorder.html.} #' \item{\code{segmentsmarker}}{A vector of length #segments with entries either '1' or '0'. An entry '1' indicates that the corresponding element in \code{segments} is a boundary segment; #' an entry '0' indicates that the corresponding segment is not a boundary segment.} #' \item{\code{edges}}{A #edges-by-2 matrix containing all the edges of the triangles in the output triangulation. Each row contains the row's indices in \code{nodes}, indicating the nodes where the edge starts from and ends to.} #' \item{\code{edgesmarkers}}{A vector of lenght #edges with entries either '1' or '0'. An entry '1' indicates that the corresponding element in \code{edge} is a boundary edge; #' an entry '0' indicates that the corresponding edge is not a boundary edge.} #' \item{\code{neighbors}}{A #triangles-by-3 matrix. Each row contains the indices of the three neighbouring triangles. An entry '-1' indicates that #' one edge of the triangle is a boundary edge.} #' \item{\code{holes}}{A #holes-by-2 matrix containing the x and y coordinates of a point internal to each hole of the mesh. These points are used to carve holes #' in the triangulation, when the domain has holes.} #' \item{\code{order}}{Either '1' or '2'. It specifies wether each mesh triangle should be represented by 3 nodes (the triangle' vertices) or by 6 nodes (the triangle's vertices and midpoints). #' These are respectively used for linear (order = 1) and quadratic (order = 2) Finite Elements. Default is \code{order} = 1.} #' @rdname fdaPDE-deprecated #' @export create.MESH.2D <- function(nodes, nodesattributes = NA, segments = NA, holes = NA, triangles = NA, order = 1, verbosity = 0) { .Deprecated("create.mesh.2D") ans=create.mesh.2D(nodes=nodes,nodesattributes=nodesattributes,segments=segments,holes=holes,triangles=triangles,order=order,verbosity=verbosity) ans } #' @param mesh A MESH2D object representing the triangular mesh, created by \link{create.MESH.2D}. #' @param minimum_angle A scalar specifying a minimun value for the triangles angles. #' @param maximum_area A scalar specifying a maximum value for the triangles areas. #' @param delaunay A boolean parameter indicating whether or not the output mesh should satisfy the Delaunay condition. #' @usage refine.MESH.2D(mesh, minimum_angle, maximum_area, delaunay, verbosity) #' @return A MESH2D object representing the refined triangular mesh, with the following output: #' \item{\code{nodes}}{A #nodes-by-2 matrix containing the x and y coordinates of the mesh nodes.} #' \item{\code{nodesmarkers}}{A vector of length #nodes, with entries either '1' or '0'. An entry '1' indicates that the corresponding node is a boundary node; an entry '0' indicates that the corresponding node is not a boundary node.} #' \item{\code{nodesattributes}}{nodesattributes A matrix with #nodes rows containing nodes' attributes. #' These are passed unchanged to the output. If a node is added during the triangulation process or mesh refinement, its attributes are computed #' by linear interpolation using the attributes of neighboring nodes. This functionality is for instance used to compute the value #' of a Dirichlet boundary condition at boundary nodes added during the triangulation process.} #' \item{\code{triangles}}{A #triangles-by-3 (when \code{order} = 1) or #triangles-by-6 (when \code{order} = 2) matrix. #' This option is used when a triangulation is already available. It specifies the triangles giving the row's indices in \code{nodes} of the triangles' vertices and (when \code{nodes} = 2) also if the triangles' edges midpoints. The triangles' vertices and midpoints are ordered as described #' at \cr https://www.cs.cmu.edu/~quake/triangle.highorder.html.} #' \item{\code{edges}}{A #edges-by-2 matrix. Each row contains the row's indices of the nodes where the edge starts from and ends to.} #' \item{\code{edgesmarkers}}{A vector of lenght #edges with entries either '1' or '0'. An entry '1' indicates that the corresponding element in \code{edge} is a boundary edge; #' an entry '0' indicates that the corresponding edge is not a boundary edge.} #' \item{\code{neighbors}}{A #triangles-by-3 matrix. Each row contains the indices of the three neighbouring triangles. An entry '-1' indicates that #' one edge of the triangle is a boundary edge.} #' \item{\code{holes}}{A #holes-by-2 matrix containing the x and y coordinates of a point internal to each hole of the mesh. These points are used to carve holes #' in the triangulation, when the domain has holes.} #' \item{\code{order}}{Either '1' or '2'. It specifies wether each mesh triangle should be represented by 3 nodes (the triangle' vertices) or by 6 nodes (the triangle's vertices and midpoints). #' These are respectively used for linear (order = 1) and quadratic (order = 2) Finite Elements. Default is \code{order} = 1.} #' @export #' @rdname fdaPDE-deprecated refine.MESH.2D<-function(mesh, minimum_angle = NA, maximum_area = NA, delaunay = FALSE, verbosity = 0) { .Deprecated("refine.mesh.2D") ans=refine.mesh.2D(mesh=mesh, minimum_angle=minimum_angle,maximum_area=maximum_area,delaunay=delaunay,verbosity=verbosity) ans } #' @param x A MESH2D object defining the triangular mesh, as generated by \code{create.Mesh.2D} or \code{refine.Mesh.2D}. #' @param ... Arguments representing graphical options to be passed to \link[graphics]{par}. #' @usage \method{plot}{MESH2D}(x, ...) #' @export #' @rdname fdaPDE-deprecated plot.MESH2D<-function(x, ...) { .Deprecated("plot.mesh.2D") plot(x$nodes, xlab="", ylab="", xaxt="n", yaxt="n", bty="n", ...)
segments(x$nodes[x$edges[,1],1], x$nodes[x$edges[,1],2],
x$nodes[x$edges[,2],1], x$nodes[x$edges[,2],2], ...)
segments(x$nodes[x$segments[,1],1], x$nodes[x$segments[,1],2],
x$nodes[x$segments[,2],1], x$nodes[x$segments[,2],2], col="red", ...)
}


## Try the fdaPDE package in your browser

Any scripts or data that you put into this service are public.

fdaPDE documentation built on July 2, 2020, 2:22 a.m.