Nothing
fect.gsynth <- function(Y, # Outcome variable, (T*N) matrix
X, # Explanatory variables: (T*N*p) array
D, # Indicator for treated unit (tr==1)
I,
II,
T.on,
T.off = NULL,
T.on.carry = NULL,
T.on.balance = NULL,
balance.period = NULL,
CV = TRUE,
criterion = "mspe",
r = 0, # r.end when CV==TRUE
r.end = 3,
binary = FALSE,
QR = FALSE,
force,
hasRevs = 1,
tol, # tolerance level
boot = FALSE, # bootstrapped sample
placeboTest = 0,
placebo.period = NULL,
carryoverTest = 0,
carryover.period = NULL,
norm.para = NULL,
calendar.enp.seq = NULL,
time.on.seq = NULL,
time.off.seq = NULL,
time.on.balance.seq = NULL,
group.level = NULL,
group = NULL,
time.on.seq.group = NULL,
time.off.seq.group = NULL) {
##-------------------------------##
## Parsing data
##-------------------------------##
carryover.pos <- placebo.pos <- na.pos <- NULL
res.sd1 <- res.sd2 <- NULL
## unit id and time
TT <- dim(Y)[1]
N <- dim(Y)[2]
id <- 1:N
time <- 1:TT
if (is.null(X) == FALSE) {
p <- dim(X)[3]
} else {
p <- 0
X <- array(0, dim = c(1, 1, 0))
}
## replicate data
YY <- Y
YY[which(II == 0)] <- 0 ## reset to 0
## once treated, always treated
## careful unbalanced case: calculate treated units
## treat reversals as always treated
D <- apply(D, 2, function(vec){cumsum(vec)})
D <- ifelse(D > 0, 1, 0)
D.sum <- colSums(D)
tr <- which(D.sum>=1)
Ntr <- length(tr)
co <- which(D.sum==0)
Nco <- length(co)
I.tr <- as.matrix(I[,tr]) ## maybe only 1 treated unit
I.co <- I[,co]
II.tr <- as.matrix(II[,tr])
II.co <- II[,co]
Y.tr <- as.matrix(Y[,tr])
Y.co <- as.matrix(Y[,co])
YY.tr <- as.matrix(YY[,tr])
YY.co <- as.matrix(YY[,co])
Ntr <- length(tr)
Nco <- length(co)
if (p == 0) {
X.tr <- array(0, dim = c(TT, Ntr, 0))
X.co <- array(0, dim = c(TT, Nco, 0))
} else {
X.tr <- array(NA, dim=c(TT, Ntr, p))
X.co <- array(NA, dim=c(TT, Nco, p))
for (j in 1:p) {
X.tr[, , j] <- X[, tr, j]
X.co[, , j] <- X[, co, j]
}
}
if (!0%in%I.tr) {
## a (TT*Ntr) matrix, time dimension: before treatment
pre <- as.matrix(D[,tr] == 0 & II[,tr] == 1)
}
else {
pre <- as.matrix(D[,tr] == 0 & I[,tr] == 1 & II[,tr]==1)
}
T0 <- apply(pre, 2, sum)
T0.min <- min(T0)
pre.v <- as.vector(pre) ## vectorized "pre-treatment" indicator
id.tr.pre.v <- rep(id, each = TT)[which(pre.v == 1)] ## vectorized pre-treatment grouping variable for the treated
time.pre <- split(rep(time, Ntr)[which(pre.v == 1)], id.tr.pre.v) ## a list of pre-treatment periods
sameT0 <- length(unique(T0)) == 1
# initial fit using Y.co
data.ini <- matrix(NA, Nco*TT, (p+3))
data.ini[,1] <- c(Y.co)
data.ini[,2] <- rep(1:Nco, each = TT)
data.ini[,3] <- rep(1:TT, Nco)
if (p > 0) {
for (i in 1:p) {
data.ini[, (3 + i)] <- c(X.co[, , i])
}
}
## observed Y0 indicator:
initialOut <- Y0.co <- beta0 <- FE0 <- xi0 <- factor0 <- NULL
oci <- which(c(II.co) == 1)
initialOut <- initialFit(data = data.ini, force = force, oci = oci)
Y0.co <- initialOut$Y0
beta0 <- initialOut$beta0
if (p > 0 && sum(is.na(beta0)) > 0) {
beta0[which(is.na(beta0))] <- 0
}
validX <- 1 ## no multi-colinearity
## cross-validation only for gsynth
if(CV==TRUE){
## starting r
if ((r > (T0.min-1) & force%in%c(0,2)) | (r > (T0.min-2) & force%in%c(1,3))) {
message("Warning: r is too big compared with T0; reset to 0.\n")
r <- 0
}
## store all MSPE
if (force%in%c(0, 2)) {
r.max <- max(min((T0.min-1), r.end), 0)
}
else {
r.max <- max(min((T0.min-2), r.end), 0)
}
if (r.max == 0) {
r.cv <- 0
message("Cross validation cannot be performed since available pre-treatment records of treated units are too few. So set r.cv = 0.\n ")
if (!0%in%I.co) {
est.co.best <- inter_fe(Y.co, X.co, 0, force = force, beta0 = beta0, tol)
} else {
est.co.best <- inter_fe_ub(Y.co, Y0.co, X.co, I.co, beta0, 0, force = force, tol)
}
}
else {
r.old <- r ## save the minimal number of factors
message("Cross-validating ...","\r")
CV.out <- matrix(NA, (r.max - r.old + 1), 5)
colnames(CV.out) <- c("r", "sigma2", "IC", "PC", "MSPE")
CV.out[,"r"] <- c(r.old:r.max)
CV.out[,"MSPE"] <- CV.out[,"PC"] <- 1e20
r.pc <- est.co.pc.best <- NULL
for (i in 1:dim(CV.out)[1]) {
r <- CV.out[i, "r"]
if (!0%in%I.co) {
est.co <- inter_fe(Y = Y.co, X = X.co, r,
force = force, beta0 = beta0, tol)
}
else {
est.co <- inter_fe_ub(Y = Y.co, Y0 = Y0.co, X = X.co, I = I.co,
beta0, r, force = force, tol)
}
if (p > 0) {
na.pos <- is.nan(est.co$beta)
beta <- est.co$beta
beta[is.nan(est.co$beta)] <- 0
}
if (is.null(norm.para)) {
sigma2 <- est.co$sigma2
IC <- est.co$IC
PC <- est.co$PC
}
else {
sigma2 <- est.co$sigma2 * (norm.para[1]^2)
IC <- est.co$IC - log(est.co$sigma2) + log(sigma2)
PC <- est.co$PC * (norm.para[1]^2)
}
if (r!=0) {
F.hat <- as.matrix(est.co$factor)
if (force%in%c(1, 3)) {F.hat <- cbind(F.hat, rep(1,TT))}
}
U.tr <- Y.tr
if (p > 0) {
for (j in 1:p) {
U.tr <- U.tr - X.tr[, , j] * beta[j]
}
}
U.tr <- U.tr - matrix(est.co$mu, TT, Ntr) ## grand mean
if (force%in%c(2, 3)) {
U.tr <- U.tr - matrix(est.co$xi, TT, Ntr, byrow = FALSE)
}
if (0%in%I.tr) {
U.tr[which(I.tr == 0)] <- 0
}
U.sav <- U.tr
sum.e2 <- num.y <- 0
for (lv in unique(unlist(time.pre))) {
U.tr <- U.sav
if ( max(T0) == T0.min & (!0%in%I.tr) ) {
U.lv <- as.matrix(U.tr[setdiff(c(1:T0.min), lv), ]) ## setdiff : x
}
else {
U.tr.pre.v <- as.vector(U.tr)[which(pre.v == 1)] ## pre-treatment residual in a vector
U.tr.pre <- split(U.tr.pre.v, id.tr.pre.v) ## a list of pretreatment residuals
if (!0%in%I.tr) {
U.lv<-lapply(U.tr.pre, function(vec){return(vec[-lv])}) ## a list
}
else {
## U.tr.pre.sav <- U.tr.pre
for (i.tr in 1:Ntr) {
U.tmp <- U.tr.pre[[i.tr]]
U.tr.pre[[i.tr]] <- U.tmp[!time.pre[[i.tr]] == lv]
}
U.lv <- U.tr.pre
}
}
if (r == 0) {
if (force%in%c(1,3)) { ## take out unit fixed effect
if ( max(T0) == T0.min & (!0%in%I.tr) ) {
alpha.tr.lv <- colMeans(U.lv)
U.tr <- U.tr - matrix(alpha.tr.lv, TT, Ntr, byrow=TRUE)
}
else {
alpha.tr.lv <- sapply(U.lv,mean)
U.tr <- U.tr - matrix(alpha.tr.lv, TT, Ntr, byrow=TRUE)
}
}
e <- U.tr[which(time == lv),] ## that period
}
else {
F.lv <- as.matrix(F.hat[which(time != lv), ])
if ( max(T0) ==T0.min & (!0%in%I.tr) ) {
F.lv.pre <- F.hat[setdiff(c(1:T0.min), lv), ]
lambda.lv <- try(
solve(t(F.lv.pre) %*% F.lv.pre) %*% t(F.lv.pre) %*% U.lv,
silent = TRUE)
if('try-error' %in% class(lambda.lv)) {
break
}
}
else {
if (!0%in%I.tr) {
lambda.lv <- try(as.matrix(sapply(U.lv, function(vec){
F.lv.pre <- as.matrix(F.lv[1:length(vec),])
l.lv.tr <- solve(t(F.lv.pre) %*% F.lv.pre) %*% t(F.lv.pre) %*% vec
return(l.lv.tr)
})), silent = TRUE)
if('try-error' %in% class(lambda.lv)) {
break
} else {
if( (r == 1) & (force%in%c(0,2)) ){
lambda.lv <- t(lambda.lv)
}
}
} else {
if (force%in%c(1,3)) {
lambda.lv <- matrix(NA, (r+1), Ntr)
} else {
lambda.lv <- matrix(NA, r, Ntr)
}
test <- try(
for (i.tr in 1:Ntr) {
F.lv.pre <- as.matrix(F.hat[setdiff(time.pre[[i.tr]], lv),])
lambda.lv[,i.tr] <- solve(t(F.lv.pre) %*% F.lv.pre) %*% t(F.lv.pre) %*% as.matrix(U.lv[[i.tr]])
}, silent = TRUE)
if('try-error' %in% class(test)) {
break
}
}
}
lambda.lv <- t(lambda.lv) ## N*r
e <- U.tr[which(time == lv),] - c(F.hat[which(time == lv),] %*% t(lambda.lv))
}
if (sameT0 == FALSE | 0%in%I.tr) {
e <- e[which(pre[which(time == lv),] == TRUE)]
}
## sum up
sum.e2 <- sum.e2 + t(e) %*% e
num.y <- num.y + length(e)
} ## end of leave-one-out
MSPE <- ifelse(num.y == 0, Inf, sum.e2/num.y)
if (!is.null(norm.para)) {
MSPE <- MSPE * (norm.para[1]^2)
}
if ((min(CV.out[,"MSPE"]) - MSPE) > tol * min(CV.out[,"MSPE"])) {
## at least 5% improvement for MPSE
est.co.best <- est.co ## interFE result with the best r
r.cv <- r
}
else {
if (r == r.cv + 1) message("*")
}
if (PC < min(CV.out[,"PC"])) {
r.pc <- r
est.co.pc.best <- est.co
}
CV.out[i, 2:5] <- c(sigma2, IC, PC, MSPE)
message("\n r = ",r, "; sigma2 = ",
sprintf("%.5f",sigma2), "; IC = ",
sprintf("%.5f",IC), "; PC = ",
sprintf("%.5f",PC), "; MSPE = ",
sprintf("%.5f",MSPE), sep="")
} ## end of while: search for r_star over
MSPE.best <- min(CV.out[,"MSPE"])
if (r > (T0.min-1)) {message(" (r hits maximum)")}
message("\n\n r* = ",r.cv, sep="")
message("\n\n")
}
}
else{
r.cv <- r
r.min <- r.max <- r
}
est.co.fect <- NULL
est.co.best <- inter_fe_ub(YY.co, Y0.co, X.co, II.co, beta0, r.cv, force = force, tol)
if (boot == FALSE) {
if (r.cv == 0) {
est.co.fect <- est.co.best
}
else {
est.co.fect <- inter_fe_ub(YY.co, Y0.co, X.co, II.co, beta0, 0, force = force, tol)
}
}
validX <- est.co.best$validX
validF <- ifelse(r.cv > 0, 1, 0)
# get the counterfactual of X
## ## take out the effect of X
U.tr.r0 <- U.tr <- Y.tr
if (p>0) {
beta <- est.co.best$beta
if (est.co.best$validX == 0) {
beta <- matrix(0, p, 1)
}
else {
beta <- est.co.best$beta
beta[is.nan(est.co.best$beta)] <- 0
}
for (j in 1:p) {U.tr <- U.tr-X.tr[, , j] * beta[j]}
if (boot == FALSE) {
beta.r0 <- est.co.fect$beta
if (est.co.fect$validX == 0) {
beta.r0 <- matrix(0, p, 1)
}
else {
beta.r0 <- est.co.fect$beta
beta.r0[is.nan(est.co.fect$beta)] <- 0
}
for (j in 1:p) {U.tr.r0 <- U.tr.r0-X.tr[, , j] * beta.r0[j]}
}
}
else {
beta <- NA
beta.r0 <- NA
}
mu <- est.co.best$mu
U.tr <- U.tr - matrix(mu, TT, Ntr) ## grand mean
Y.fe.bar <- rep(mu, TT)
if(boot==FALSE){
mu.r0 <- est.co.fect$mu
U.tr.r0 <- U.tr.r0 - matrix(mu.r0, TT, Ntr)
Y.fe.bar.r0 <- rep(mu.r0, TT)
}
if (force%in%c(2,3)) {
xi <- est.co.best$xi ## a (TT*1) matrix
U.tr <- U.tr - matrix(c(xi), TT, Ntr, byrow = FALSE) ## will be adjusted at last
Y.fe.bar <- Y.fe.bar + xi
if(boot==FALSE){
xi.r0 <- est.co.fect$xi ## a (TT*1) matrix
U.tr.r0 <- U.tr.r0 - matrix(c(xi.r0), TT, Ntr, byrow = FALSE)
Y.fe.bar.r0 <- Y.fe.bar.r0 + xi.r0
}
}
if (max(T0) == T0.min & (!0%in%I.tr) ) {
U.tr.pre <- as.matrix(U.tr[1:T0.min,])
if(boot==FALSE){
U.tr.pre.r0 <- as.matrix(U.tr.r0[1:T0.min,])
}
}
else {
## not necessary to reset utr for ub data for pre.v doesn't include them
U.tr.pre.v <- as.vector(U.tr)[which(pre.v == 1)] # pre-treatment residual in a vector
U.tr.pre <- split(U.tr.pre.v, id.tr.pre.v) ## a list of pretreatment residuals
if(boot==FALSE){
U.tr.pre.v.r0 <- as.vector(U.tr.r0)[which(pre.v == 1)] # pre-treatment residual in a vector
U.tr.pre.r0 <- split(U.tr.pre.v.r0, id.tr.pre.v) ## a list of pretreatment residuals
}
}
## the error structure
# for r=0
if (force%in%c(1,3)) { ## take out unit fixed effect
if ((max(T0) == T0.min) & (!0%in%I.tr)) {
if(boot==FALSE){
alpha.tr.r0 <- as.matrix(colMeans(U.tr.pre.r0))
U.tr.r0 <- U.tr.r0 - matrix(alpha.tr.r0, TT, Ntr, byrow = TRUE)
}
}
else {
if(boot == FALSE){
alpha.tr.r0 <- as.matrix(sapply(U.tr.pre.r0, mean))
U.tr.r0 <- U.tr.r0 - matrix(alpha.tr.r0, TT, Ntr, byrow = TRUE)
}
}
}
if(boot==FALSE){
eff.r0 <- U.tr.r0
}
if (r.cv == 0) {
if (force%in%c(1,3)) { ## take out unit fixed effect
if ((max(T0) == T0.min) & (!0%in%I.tr)) {
alpha.tr <- as.matrix(colMeans(U.tr.pre))
U.tr <- U.tr - matrix(alpha.tr, TT, Ntr, byrow = TRUE)
}
else {
alpha.tr <- as.matrix(sapply(U.tr.pre, mean))
U.tr <- U.tr - matrix(alpha.tr, TT, Ntr, byrow = TRUE)
}
}
eff <- U.tr
lambda.tr <- NULL
lambda.co <- NULL
}
else { ## Factors
F.hat <- as.matrix(est.co.best$factor)
if (force %in% c(1, 3)) {F.hat <- cbind(F.hat, rep(1,TT))}
## Lambda_tr (Ntr*r) or (Ntr*(r+1))
if (max(T0) == T0.min & (!0%in%I.tr)) {
F.hat.pre <- F.hat[1:T0.min,]
lambda.tr <- try(solve(t(F.hat.pre) %*% F.hat.pre) %*% t(F.hat.pre) %*% U.tr.pre,
silent = TRUE)
if('try-error' %in% class(lambda.tr)) {
return(list(att = rep(NA, TT), att.avg = NA, beta = matrix(NA, p, 1)))
}
}
else {
if (!0%in%I.tr) {
lambda.tr <- try(as.matrix(sapply(U.tr.pre, function(vec) {
F.hat.pre <- as.matrix(F.hat[1:length(vec),])
l.tr <- solve(t(F.hat.pre)%*%F.hat.pre)%*%t(F.hat.pre)%*%vec
return(l.tr) ## a vector of each individual lambdas
})), silent =TRUE)
if('try-error' %in% class(lambda.tr)) {
return(list(att = rep(NA, TT), att.avg = NA, beta = matrix(NA, p, 1)))
## stop("Error occurs. Please set a smaller value of factor number.")
}
if ( (r.cv == 1) & (force%in%c(0,2)) ) {
lambda.tr <- t(lambda.tr)
}
}
else {
if (force%in%c(1,3)) {
lambda.tr <- matrix(NA, (r.cv+1), Ntr)
}
else {
lambda.tr <- matrix(NA, r.cv, Ntr)
}
test <- try(
for (i.tr in 1:Ntr) {
F.hat.pre <- as.matrix(F.hat[time.pre[[i.tr]],])
lambda.tr[,i.tr] <- solve(t(F.hat.pre)%*%F.hat.pre)%*%t(F.hat.pre)%*%as.matrix(U.tr.pre[[i.tr]])
}, silent =TRUE
)
if('try-error' %in% class(test)) {
return(list(att = rep(NA, TT), att.avg = NA, beta = matrix(NA, p, 1), eff = matrix(NA, TT, Ntr)))
## stop("Error occurs. Please set a smaller value of factor number.")
}
}
}
lambda.tr <- t(lambda.tr)
eff <- U.tr - F.hat%*%t(lambda.tr)
if (force%in%c(1,3)) {
alpha.tr <- as.matrix(lambda.tr[, (r.cv+1), drop = FALSE])
lambda.tr <- lambda.tr[, 1:r.cv, drop = FALSE]
}
if (boot == 0) {
inv.tr <- try(
ginv(t(as.matrix(lambda.tr))), silent = TRUE
)
if (!'try-error' %in% class(inv.tr)) {
wgt.implied <- t(inv.tr%*%t(as.matrix(est.co.best$lambda)))
}
}
} ## end of r!=0 case
if (0%in%I.tr) {
eff[which(I.tr == 0)] <- 0 ## adjust
if(boot==FALSE){
eff.r0[which(I.tr == 0)] <- 0
}
} ## missing data will be adjusted to NA finally
##-------------------------------##
## Summarize
##-------------------------------##
## counterfactuals for treated units
Y.ct.tr <- as.matrix(Y.tr - eff)
Y.ct.co <- est.co.best$fit
Y.ct <- Y
Y.ct[,tr] <- Y.ct.tr
Y.ct[,co] <- Y.ct.co
if(boot==FALSE){
Y.ct.tr.r0 <- as.matrix(Y.tr - eff.r0)
Y.ct.co.r0 <- est.co.fect$fit
Y.ct.r0 <- Y
Y.ct.r0[,tr] <- Y.ct.tr.r0
Y.ct.r0[,co] <- Y.ct.co.r0
}
## we first adjustment for normalization
if (!is.null(norm.para)) {
Y <- Y * norm.para[1]
## variance of the error term
sigma2 <- est.co.best$sigma2 <- est.co.best$sigma2 * (norm.para[1]^2)
IC <- est.co.best$IC <- est.co.best$IC - log(est.co.best$sigma2) + log(sigma2)
PC <- est.co.best$PC <- est.co.best$PC * (norm.para[1]^2)
## output of estimates
mu <- est.co.best$mu <- est.co.best$mu * norm.para[1]
if (r.cv > 0) {
est.co.best$lambda <- est.co.best$lambda * norm.para[1]
lambda.tr <- lambda.tr * norm.para[1]
est.co.best$VNT <- est.co.best$VNT * norm.para[1]
}
if (force%in%c(1, 3)) {
est.co.best$alpha <- est.co.best$alpha * norm.para[1]
alpha.tr <- alpha.tr * norm.para[1]
}
if (force%in%c(2,3)) {
xi <- est.co.best$xi <- est.co.best$xi * norm.para[1]
}
est.co.best$residuals <- est.co.best$residuals * norm.para[1]
est.co.best$fit <- est.co.best$fit * norm.para[1]
if (boot == FALSE) {
est.co.fect$fit <- est.co.fect$fit * norm.para[1]
}
est.co.fect$sigma2 <- est.co.fect$sigma2 * norm.para[1]
# estimated counterfactual
Y.tr <- Y.tr * norm.para[1]
Y.co <- Y.co * norm.para[1]
Y.ct <- Y.ct * norm.para[1]
Y.ct.tr <- Y.ct.tr * norm.para[1]
Y.ct.co <- Y.ct.co * norm.para[1]
eff <- eff * norm.para[1]
if(boot==FALSE){
Y.ct.r0 <- Y.ct.r0 * norm.para[1]
Y.ct.tr.r0 <- Y.ct.tr.r0 * norm.para[1]
Y.ct.co.r0 <- Y.ct.co.r0 * norm.para[1]
eff.r0 <- eff.r0 * norm.para[1]
}
}
## 0. relevant parameters
IC <- est.co.best$IC
sigma2 <- est.co.best$sigma2
PC <- est.co.best$PC
loglikelihood <- NULL
if (p>0) {
na.pos <- is.nan(est.co.best$beta)
beta <- est.co.best$beta
if( sum(na.pos) > 0 ) {
beta[na.pos] <- NA
}
}
else {
beta <- NA
}
## 1. estimated att and counterfactuals
if(boot==FALSE){
Y.ct.equiv <- Y.ct.r0
}
else{
Y.ct.equiv <- NULL
}
eff <- Y - Y.ct
missing.index <- which(is.na(eff))
if(length(missing.index)>0){
I[missing.index] <- 0
II[missing.index] <- 0
}
if (0 %in% I) {
eff[which(I == 0)] <- NA
}
complete.index <- which(!is.na(eff))
att.avg <- sum(eff[complete.index] * D[complete.index])/(sum(D[complete.index]))
marginal <- NULL
att.avg.balance <- NA
if(!is.null(balance.period)){
complete.index2 <- which(!is.na(T.on.balance))
att.avg.balance <- sum(eff[complete.index2] * D[complete.index2])/(sum(D[complete.index2]))
}
## att.avg.unit
tr.pos <- which(apply(D, 2, sum) > 0)
att.unit <- sapply(1:length(tr.pos), function(vec){return(sum(eff[, tr.pos[vec]] * D[, tr.pos[vec]]) / sum(D[, tr.pos[vec]]))})
att.avg.unit <- mean(att.unit,na.rm=TRUE)
equiv.att.avg <- eff.equiv <- NULL
if (boot == FALSE) {
eff.equiv <- Y - Y.ct.equiv
if (0 %in% I) {
eff.equiv[which(I == 0)] <- NA
}
complete.index <- which(!is.na(eff.equiv))
equiv.att.avg <- sum(eff.equiv[complete.index] * D[complete.index])/(sum(D[complete.index]))
}
## 2. rmse for treated units' observations under control
if (binary == 0) {
tr <- which(apply(D, 2, sum) > 0)
tr.co <- which((as.matrix(1 - D[,tr]) * as.matrix(II[,tr])) == 1)
eff.tr <- as.matrix(eff[,tr])
v.eff.tr <- eff.tr[tr.co]
rmse <- sqrt(mean(v.eff.tr^2,na.rm=TRUE))
}
## 3. unbalanced output
Y.ct.full <- Y.ct
res.full <- Y - Y.ct
if (0 %in% I) {
eff[which(I == 0)] <- NA
Y.ct[which(I == 0)] <- NA
}
if (binary == FALSE) {
res.full[which(II == 0)] <- NA
}
## 4. dynamic effects
t.on <- c(T.on)
eff.v <- c(eff) ## a vector
eff.equiv.v <- NULL
if (binary == FALSE && boot == FALSE) {
eff.equiv.v <- c(eff.equiv)
}
rm.pos1 <- which(is.na(eff.v))
rm.pos2 <- which(is.na(t.on))
eff.v.use1 <- eff.v
t.on.use <- t.on
n.on.use <- rep(1:N, each = TT)
if (NA %in% eff.v | NA %in% t.on) {
eff.v.use1 <- eff.v[-c(rm.pos1, rm.pos2)]
t.on.use <- t.on[-c(rm.pos1, rm.pos2)]
n.on.use <- n.on.use[-c(rm.pos1, rm.pos2)]
if (binary == FALSE && boot == FALSE) {
eff.equiv.v <- eff.equiv.v[-c(rm.pos1, rm.pos2)]
}
}
pre.pos <- which(t.on.use <= 0)
eff.pre <- cbind(eff.v.use1[pre.pos], t.on.use[pre.pos], n.on.use[pre.pos])
colnames(eff.pre) <- c("eff", "period", "unit")
pre.sd <- eff.pre.equiv <- NULL
if (binary == FALSE && boot == FALSE) {
eff.pre.equiv <- cbind(eff.equiv.v[pre.pos], t.on.use[pre.pos], n.on.use[pre.pos])
colnames(eff.pre.equiv) <- c("eff.equiv", "period", "unit")
pre.sd <- tapply(eff.pre.equiv[,1], eff.pre.equiv[,2], sd)
pre.sd <- cbind(pre.sd, sort(unique(eff.pre.equiv[, 2])), table(eff.pre.equiv[, 2]))
colnames(pre.sd) <- c("sd", "period", "count")
}
time.on <- sort(unique(t.on.use))
att.on <- as.numeric(tapply(eff.v.use1, t.on.use, mean)) ## NA already removed
count.on <- as.numeric(table(t.on.use))
if (!is.null(time.on.seq)) {
count.on.med <- att.on.med <- rep(NA, length(time.on.seq))
att.on.med[which(time.on.seq %in% time.on)] <- att.on
count.on.med[which(time.on.seq %in% time.on)] <- count.on
att.on <- att.on.med
count.on <- count.on.med
time.on <- time.on.seq
}
## 4.2 balance effect
balance.att <- NULL
if (!is.null(balance.period)) {
t.on.balance <- c(T.on.balance)
rm.pos4 <- which(is.na(t.on.balance))
t.on.balance.use <- t.on.balance
if (NA %in% eff.v | NA %in% t.on.balance) {
eff.v.use3 <- eff.v[-c(rm.pos1, rm.pos4)]
t.on.balance.use <- t.on.balance[-c(rm.pos1, rm.pos4)]
}
balance.time <- sort(unique(t.on.balance.use))
balance.att <- as.numeric(tapply(eff.v.use3, t.on.balance.use, mean)) ## NA already removed
balance.count <- as.numeric(table(t.on.balance.use))
if (!is.null(time.on.balance.seq)) {
balance.att.med <- rep(NA, length(time.on.balance.seq))
balance.count.med <- rep(0, length(time.on.balance.seq))
balance.att.med[which(time.on.balance.seq %in% balance.time)] <- balance.att
if(length(balance.count)>0){
balance.count.med[which(time.on.balance.seq %in% balance.time)] <- balance.count
}
balance.count <- balance.count.med
balance.att <- balance.att.med
balance.time <- time.on.balance.seq
}
#placebo for balanced samples
if(!is.null(placebo.period) && placeboTest == 1){
if (length(placebo.period) == 1) {
balance.placebo.pos <- which(balance.time == placebo.period)
balance.att.placebo <- balance.att[balance.placebo.pos]
}
else {
balance.placebo.pos <- which(balance.time >= placebo.period[1] & balance.time <= placebo.period[2])
balance.att.placebo <- sum(balance.att[balance.placebo.pos] * balance.count[balance.placebo.pos]) / sum(balance.count[balance.placebo.pos])
}
}
}
## 5. placebo effect, if placeboTest == 1
if (!is.null(placebo.period) && placeboTest == 1) {
if (length(placebo.period) == 1) {
placebo.pos <- which(time.on == placebo.period)
att.placebo <- att.on[placebo.pos]
} else {
placebo.pos <- which(time.on >= placebo.period[1] & time.on <= placebo.period[2])
att.placebo <- sum(att.on[placebo.pos] * count.on[placebo.pos]) / sum(count.on[placebo.pos])
}
}
eff.off.equiv <- off.sd <- eff.off <- NULL
## 6. switch-off effects
if (hasRevs == 1) {
t.off <- c(T.off)
rm.pos3 <- which(is.na(t.off))
eff.v.use2 <- eff.v
t.off.use <- t.off
if (NA %in% eff.v | NA %in% t.off) {
eff.v.use2 <- eff.v[-c(rm.pos1, rm.pos3)]
t.off.use <- t.off[-c(rm.pos1, rm.pos3)]
}
off.pos <- which(t.off.use > 0)
eff.off <- cbind(eff.v.use2[off.pos], t.off.use[off.pos], n.on.use[off.pos])
colnames(eff.off) <- c("eff", "period", "unit")
if (binary == FALSE && boot == FALSE) {
eff.off.equiv <- cbind(eff.equiv.v[off.pos], t.off.use[off.pos], n.on.use[off.pos])
colnames(eff.off.equiv) <- c("off.equiv", "period", "unit")
off.sd <- tapply(eff.off.equiv[,1], eff.off.equiv[,2], sd)
off.sd <- cbind(off.sd, sort(unique(eff.off.equiv[, 2])), table(eff.off.equiv[, 2]))
colnames(off.sd) <- c("sd", "period", "count")
}
time.off <- sort(unique(t.off.use))
att.off <- as.numeric(tapply(eff.v.use2, t.off.use, mean)) ## NA already removed
count.off <- as.numeric(table(t.off.use))
if (!is.null(time.off.seq)) {
count.off.med <- att.off.med <- rep(NA, length(time.off.seq))
att.off.med[which(time.off.seq %in% time.off)] <- att.off
count.off.med[which(time.off.seq %in% time.off)] <- count.off
att.off <- att.off.med
count.off <- count.off.med
time.off <- time.off.seq
}
}
## 7. carryover effects
if (!is.null(carryover.period) && carryoverTest == 1 && hasRevs == 1) {
## construct att.carryover
## eff is derived from eff.v
## period and Num.Units are derived from T.off
if (length(carryover.period) == 1) {
carryover.pos <- which(time.off == carryover.period)
att.carryover <- att.off[carryover.pos]
} else {
carryover.pos <- which(time.off >= carryover.period[1] & time.off <= carryover.period[2])
att.carryover <- sum(att.off[carryover.pos] * count.off[carryover.pos]) / sum(count.off[carryover.pos])
}
}
## 9. loess HTE by time
D.missing <- D
D.missing[which(D==0)] <- NA
eff.calendar <- apply(eff*D.missing,1,mean,na.rm=TRUE)
N.calendar <- apply(!is.na(eff*D.missing),1,sum)
T.calendar <- c(1:TT)
if(sum(!is.na(eff.calendar))>1){
#loess fit
if(!is.null(calendar.enp.seq)){
if(length(calendar.enp.seq)==1 & is.na(calendar.enp.seq)){
calendar.enp.seq <- NULL
}
}
if(is.null(calendar.enp.seq)){
loess.fit <- suppressWarnings(try(loess(eff.calendar~T.calendar,weights = N.calendar),silent=TRUE))
}
else{
loess.fit <- suppressWarnings(try(loess(eff.calendar~T.calendar,weights = N.calendar,enp.target=calendar.enp.seq),silent=TRUE))
}
if('try-error' %in% class(loess.fit)){
eff.calendar.fit <- eff.calendar
calendar.enp <- NULL
}
else{
eff.calendar.fit <- eff.calendar
eff.calendar.fit[which(!is.na(eff.calendar))] <- loess.fit$fit
calendar.enp <- loess.fit$enp
}
}
else{
eff.calendar.fit <- eff.calendar
calendar.enp <- NULL
}
## 8. cohort effects
if (!is.null(group)) {
cohort <- cbind(c(group), c(D), c(eff.v))
rm.pos <- unique(c(rm.pos1, which(cohort[, 2] == 0)))
cohort <- cohort[-rm.pos, ]
g.level <- sort(unique(cohort[, 1]))
raw.group.att <- as.numeric(tapply(cohort[, 3], cohort[, 1], mean))
group.att <- rep(NA, length(group.level))
group.att[which(group.level %in% g.level)] <- raw.group.att
# by-group dynamic effects
group.level.name <- names(group.level)
group.output <- list()
for(i in c(1:length(group.level))){
sub.group <- group.level[i]
sub.group.name <- group.level.name[i]
## by-group dynamic effects
t.on.sub <- c(T.on[which(group==sub.group)])
eff.v.sub <- c(eff[which(group==sub.group)]) ## a vector
rm.pos1.sub <- which(is.na(eff.v.sub))
rm.pos2.sub <- which(is.na(t.on.sub))
eff.v.use1.sub <- eff.v.sub
t.on.use.sub <- t.on.sub
if (NA %in% eff.v.sub | NA %in% t.on.sub) {
eff.v.use1.sub <- eff.v.sub[-c(rm.pos1.sub, rm.pos2.sub)]
t.on.use.sub <- t.on.sub[-c(rm.pos1.sub, rm.pos2.sub)]
}
if(length(t.on.use.sub)>0){
time.on.sub <- sort(unique(t.on.use.sub))
att.on.sub <- as.numeric(tapply(eff.v.use1.sub,
t.on.use.sub,
mean)) ## NA already removed
count.on.sub <- as.numeric(table(t.on.use.sub))
}else{
time.on.sub <- att.on.sub <- count.on.sub <- NULL
}
if (!is.null(time.on.seq.group)) {
count.on.med.sub <- att.on.med.sub <- rep(NA, length(time.on.seq.group[[sub.group.name]]))
time.on.seq.sub <- time.on.seq.group[[sub.group.name]]
att.on.med.sub[which(time.on.seq.sub %in% time.on.sub)] <- att.on.sub
count.on.med.sub[which(time.on.seq.sub %in% time.on.sub)] <- count.on.sub
att.on.sub <- att.on.med.sub
count.on.sub <- count.on.med.sub
time.on.sub<- time.on.seq.sub
}
if(length(att.on.sub)==0){att.on.sub <- NULL}
if(length(time.on.sub)==0){time.on.sub <- NULL}
if(length(count.on.sub)==0){count.on.sub <- NULL}
suboutput <- list(att.on=att.on.sub,
time.on=time.on.sub,
count.on=count.on.sub)
## placebo effect, if placeboTest == 1
if (!is.null(placebo.period) && placeboTest == 1) {
if (length(placebo.period) == 1) {
placebo.pos.sub <- which(time.on.sub == placebo.period)
if(length(placebo.pos.sub)>0){
att.placebo.sub <- att.on.sub[placebo.pos.sub]
}
else{att.placebo.sub <- NULL}
}
else {
placebo.pos.sub <- which(time.on.sub >= placebo.period[1] & time.on.sub <= placebo.period[2])
if(length(placebo.pos.sub)>0){
att.placebo.sub <- sum(att.on.sub[placebo.pos.sub] * count.on.sub[placebo.pos.sub]) / sum(count.on.sub[placebo.pos.sub])
}
else{att.placebo.sub <- NULL}
}
if(length(att.placebo.sub)==0){att.placebo.sub <- NULL}
suboutput <- c(suboutput, list(att.placebo = att.placebo.sub))
}
## T.off
if (hasRevs == 1) {
t.off.sub <- c(T.off[which(group==sub.group)])
rm.pos3.sub <- which(is.na(t.off.sub))
eff.v.use2.sub <- eff.v.sub
t.off.use.sub <- t.off.sub
if (NA %in% eff.v.sub | NA %in% t.off.sub) {
eff.v.use2.sub <- eff.v.sub[-c(rm.pos1.sub, rm.pos3.sub)]
t.off.use.sub <- t.off.sub[-c(rm.pos1.sub, rm.pos3.sub)]
}
if(length(t.off.use.sub)>0){
time.off.sub <- sort(unique(t.off.use.sub))
att.off.sub <- as.numeric(tapply(eff.v.use2.sub, t.off.use.sub, mean)) ## NA already removed
count.off.sub <- as.numeric(table(t.off.use.sub))
}else{
time.off.sub <- att.off.sub <- count.off.sub <- NULL
}
if (!is.null(time.off.seq.group)) {
count.off.med.sub <- att.off.med.sub <- rep(NA, length(time.off.seq.group[[sub.group.name]]))
time.off.seq.sub <- time.off.seq.group[[sub.group.name]]
att.off.med.sub[which(time.off.seq.sub %in% time.off.sub)] <- att.off.sub
count.off.med.sub[which(time.off.seq.sub %in% time.off.sub)] <- count.off.sub
att.off.sub <- att.off.med.sub
count.off.sub <- count.off.med.sub
time.off.sub <- time.off.seq.sub
}
if(length(att.off.sub)==0){att.off.sub <- NULL}
if(length(time.off.sub)==0){time.off.sub <- NULL}
if(length(count.off.sub)==0){count.off.sub <- NULL}
suboutput <- c(suboutput, list(att.off = att.off.sub,
count.off = count.off.sub,
time.off = time.off.sub))
if (!is.null(carryover.period) && carryoverTest == 1) {
if (length(carryover.period) == 1) {
carryover.pos.sub <- which(time.off.sub == carryover.period)
if(length(carryover.pos.sub)>0){
att.carryover.sub <- att.off.sub[carryover.pos.sub]
} else{att.carryover.sub <- NULL}
} else {
carryover.pos.sub <- which(time.off.sub >= carryover.period[1] & time.off.sub <= carryover.period[2])
if(length(carryover.pos.sub)>0){
att.carryover.sub <- sum(att.off.sub[carryover.pos.sub] * count.off.sub[carryover.pos.sub]) / sum(count.off.sub[carryover.pos.sub])
} else{att.carryover.sub <- NULL}
}
if(length(att.carryover.sub)==0){att.carryover.sub <- NULL}
suboutput <- c(suboutput,list(att.carryover = att.carryover.sub))
}
}
group.output[[sub.group.name]] <- suboutput
}
}
method <- ifelse(r.cv > 0, "gsynth", "fe")
##-------------------------------##
## Storage ##
##-------------------------------##
out<-list(
## main results
method = method,
Y.ct = Y.ct,
Y.ct.full = Y.ct.full,
Y = Y,
D = D,
tr = tr,
co = co,
eff = eff,
eff.tr = eff[,tr],
I = I,
II = II,
att.avg = att.avg,
att.avg.unit = att.avg.unit,
## supporting
force = force,
T = TT,
N = N,
Ntr = Ntr,
Nco = Nco,
p = p,
r.cv = r.cv,
IC = IC,
beta = beta,
est = est.co.best,
mu = est.co.best$mu,
niter = est.co.best$niter,
validX = validX,
validF = validF,
time = time.on,
att = att.on,
count = count.on,
eff.calendar = eff.calendar,
N.calendar = N.calendar,
eff.calendar.fit = eff.calendar.fit,
eff.pre = eff.pre,
eff.pre.equiv = eff.pre.equiv,
pre.sd = pre.sd)
out <- c(out, list(PC = PC,
sigma2 = sigma2,
sigma2.fect = est.co.fect$sigma2,
res = est.co.best$residuals,
res.full = res.full,
rmse = rmse))
if (hasRevs == 1) {
out <- c(out, list(time.off = time.off,
att.off = att.off,
count.off = count.off,
eff.off = eff.off,
eff.off.equiv = eff.off.equiv,
off.sd = off.sd))
}
if (r.cv > 0) {
lambda.co <- as.matrix(est.co.best$lambda)
rownames(lambda.co) <- co
rownames(lambda.tr) <- tr
out<-c(out,list(factor = as.matrix(est.co.best$factor),
lambda.co = as.matrix(lambda.co),
lambda.tr = as.matrix(lambda.tr)))
if (boot == 0) {
if (!'try-error' %in% class(inv.tr)) {
out <- c(out, list(wgt.implied = wgt.implied))
}
}
}
if (force == 1) {
out<-c(out, list(alpha.tr = alpha.tr,
alpha.co = est.co.best$alpha))
} else if (force == 2) {
out<-c(out,list(xi = est.co.best$xi))
} else if (force == 3) {
out<-c(out,list(alpha.tr = alpha.tr,
alpha.co = est.co.best$alpha,
xi = est.co.best$xi))
}
if (!is.null(placebo.period) && placeboTest == 1) {
out <- c(out, list(att.placebo = att.placebo))
}
if(!is.null(balance.period)){
out <- c(out, list(balance.att = balance.att, balance.time = balance.time,balance.count = balance.count,balance.avg.att = att.avg.balance))
if (!is.null(placebo.period) && placeboTest == 1) {
out <- c(out, list(balance.att.placebo = balance.att.placebo))
}
}
if (!is.null(carryover.period) && carryoverTest == 1) {
out <- c(out, list(att.carryover = att.carryover))
}
if (!is.null(group)) {
out <- c(out, list(group.att = group.att,
group.output=group.output))
}
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.