R/gr_ll_flexrsurv_fromto_GA0B0AB.R

Defines functions gr_ll_flexrsurv_fromto_GA0B0AB

gr_ll_flexrsurv_fromto_GA0B0AB<-function(allparam, Y, X0, X, Z, 
		expected_rate,
		weights=NULL,
		step, Nstep, 
		intTD=intTD_NC, intweightsfunc=intweights_CAV_SIM,
		intTD_base=intTD_base_NC,
		nT0basis,
		Spline_t0=BSplineBasis(knots=NULL, degree=3,   keep.duplicates=TRUE), Intercept_t0=TRUE,
		ialpha0, nX0,
		ibeta0, nX,
		ialpha, ibeta,                             
		nTbasis,
		Spline_t =BSplineBasis(knots=NULL,  degree=3,   keep.duplicates=TRUE),
		Intercept_t_NPH=rep(TRUE, nX),
		debug.gr=FALSE,  ...){
	# compute gradient of the log likelihood of the relatice survival model
	# rate = exp( f(t)%*%gamma + X0%*%alpha0 + X%*%beta0(t) + sum( alphai(zi)betai(t) ))
	#################################################################################################################
	#################################################################################################################
	#  the coef of the first t-basis is constraint to 1 for nat-spline, and n-sum(other beta) if BS using expand() method
	#################################################################################################################
	#################################################################################################################
	#################################################################################################################
	# allparam ; vector of all coefs
	# gamma0 = allparam[1:nY0basis]
	# alpha0= allparam[ialpha0]
	# beta0= matrix(allparam[ibeta0], ncol=nX, nrow=nTbasis)
	# alpha= diag(allparam[ialpha])
	# beta= expand(matrix(allparam[ibeta], ncol=nZ, nrow=nTbasis-1))
	# beta does not contains coef for the first t-basis
	#################################################################################################################
	# Y : object of class Surv with beginning and end of interval
	#
	# X0 : non-time dependante variable (may contain spline bases expended for non-loglinear terms)
	# X : log lineair but time dependante variable 
	# Z : objesct of class DeSignMatrixLPHNLL of time dependent variables (spline basis expended)
	# expected_rate : expected rate at event time T
	# weights : weights  : LL = sum_i w_i ll_i
	# step : lag of subinterval for numerical integration fr each observation
	# Nstep : number of lag for each observation
	# intTD : function to perform numerical integration 
	# intweightfunc : function to compute weightsfor numerical integration
	# Knots_t0=NULL,Intercept_t0=FALSE, degree_t0=3, Boundary.knots_t0 time spline parameters for baseline hazard
	# Knots_t=NULL,Intercept_t=FALSE, degree_t0=, Boundary.knots_t  time spline parameters for time-dependant effects (same basis for each TD variable)
	# nT0basis : number of spline basis for NPHLIN effects
	# nX0   : nb of PH variables dim(X0)=c(nobs, nX0)
	# nX    : nb of NPHLIN variables dim(X)=c(nobs, nX)
	# nTbasis : number of time spline basis
	#  ... not used args
	# the function do not check the concorcance between length of parameter vectors and the number of knots and the Z@signature
	# returned value : the log liikelihood of the model
	
	if (debug.gr) cat("# computing gradient: gr_ll_flexrsurv_GA0B0AB\n")
	
	if(is.null(Z)){
		nZ <- 0
	} else {
		nZ <- Z@nZ
	}
	
	if(is.null(Spline_t0)){
		YT0 <- NULL
		YT0Gamma0 <- 0.0
		Spt0g <- NULL
		igamma0 <- NULL
	}
	else {
		igamma0 <- 1:nT0basis
		if(Intercept_t0){
			tmpgamma0 <- allparam[igamma0]
		}
		else {
			tmpgamma0 <- c(0, allparam[igamma0])
		}
		# baseline hazard at the end of the interval
		
		Spt0g <- Spline_t0*tmpgamma0
		YT0Gamma0 <- predictSpline(Spt0g, Y[,2])
		YT0 <- fevaluate(Spline_t0, Y[,2], intercept=Intercept_t0)
	}
	
	# contribution of non time dependant variables
	if( nX0){
		PHterm <-exp(X0 %*% allparam[ialpha0])
	} else {
		PHterm <- 1
	}
	# contribution of time d?pendant effect
	# parenthesis are important for efficiency
	if(nZ) {
		# add a row for the first basis
		tBeta <- t(ExpandAllCoefBasis(allparam[ibeta], ncol=nZ,  value=1))
		# Zalpha est la matrice des alpha(Z)
		# parenthesis important for speed ?
		Zalpha <- Z@DM %*%( diag(allparam[ialpha]) %*% Z@signature )
		Zalphabeta <- Zalpha  %*% tBeta 
		if(nX) {
			# add a row of 0 for the first T-basis when !Intercept_T_NPH
			Zalphabeta <- Zalphabeta + X %*% t(ExpandCoefBasis(allparam[ibeta0],
							ncol=nX,
							splinebasis=Spline_t,
							expand=!Intercept_t_NPH,
							value=0))
		}
	} else {
		if(nX) {
			Zalphabeta <- X %*% t(ExpandCoefBasis(allparam[ibeta0],
							ncol=nX,
							splinebasis=Spline_t,
							expand=!Intercept_t_NPH,
							value=0))
		}
		else {
			Zalphabeta <- NULL
		}
	}
	
	if(nX + nZ) {
		NPHterm <- intTD(rateTD_gamma0alphabeta, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3],
				step=step, Nstep=Nstep,
				intweightsfunc=intweightsfunc, 
				gamma0=allparam[igamma0], Zalphabeta=Zalphabeta, 
				Spline_t0=Spt0g, Intercept_t0=Intercept_t0,
				Spline_t = Spline_t, Intercept_t=TRUE)
		if(is.null(Spline_t0)){
			Intb0 <- rep(0.0, dim(Y)[1])
		}
		else {
			Intb0 <-  intTD_base(func=rateTD_gamma0alphabeta, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3],
					Spline=Spline_t0,
					step=step, Nstep=Nstep,
					intweightsfunc=intweightsfunc, 
					gamma0=allparam[igamma0], Zalphabeta=Zalphabeta, 
					Spline_t0=Spt0g, Intercept_t0=Intercept_t0,
					Spline_t = Spline_t, Intercept_t=TRUE,
					debug=debug.gr)
		}
		if( identical(Spline_t0, Spline_t)){
			Intb <- Intb0
		}
		else {
			Intb <-  intTD_base(func=rateTD_gamma0alphabeta, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3],
					Spline=Spline_t,
					step=step, Nstep=Nstep, intweightsfunc=intweightsfunc,
					gamma0=allparam[igamma0], Zalphabeta=Zalphabeta, 
					Spline_t0=Spt0g, Intercept_t0=Intercept_t0,
					Spline_t = Spline_t, Intercept_t=TRUE)
		}
		if(!Intercept_t0 & !is.null(Spline_t0)){
			Intb0<- Intb0[,-1]
		}
		indx_without_intercept <- 2:getNBases(Spline_t)
		
		YT <- fevaluate(Spline_t, Y[,2], intercept=TRUE)
		RatePred <- ifelse(Y[,3] ,
				PHterm * exp(YT0Gamma0 + apply(YT * Zalphabeta, 1, sum)),
				0)
	}
	else {
		NPHterm <- intTD(rateTD_gamma0, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3],
				step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, 
				gamma0=allparam[igamma0],
				Spline_t0=Spt0g, Intercept_t0=Intercept_t0)
		if(is.null(Spline_t0)){
			Intb0 <- rep(0.0, dim(Y)[1])
		}
		else {    
			Intb0 <-  intTD_base(func=rateTD_gamma0, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3],
					Spline=Spline_t0,
					step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, 
					gamma0=allparam[igamma0], 
					Spline_t0=Spt0g, Intercept_t0=Intercept_t0,
					debug=debug.gr)
			if(!Intercept_t0){
				Intb0<- Intb0[,-1]
			}
		}
		Intb <- NULL
		YT <- NULL
		RatePred <- ifelse(Y[,3] ,
				PHterm * exp(YT0Gamma0) ,
				0)
		
	}
	
	F <- ifelse(Y[,3] ,
			RatePred/(RatePred + expected_rate ), 
			0)
	
	if(nX + nZ) {
		if(nX0>0) {
			Intb <- Intb * c(PHterm)
		}
		IntbF <- YT*F - Intb
	}
	else {
		IntbF <- NULL
	}
	Intb0 <- Intb0 * c(PHterm)
	
	
	#####################################################################"
# now computes the mean score
	
	
	if (!is.null(weights)) {
# dldgamma0
		if(is.null(Spline_t0)){
			dLdgamma0 <- NULL
		}
		else {
			dLdgamma0 <- crossprod( YT0 * F - Intb0 , weights)
		}
		
# dalpha0
		if (nX0) {
			dLdalpha0 <- crossprod(X0 , (F - PHterm * NPHterm) * weights )
		}
		else {
			dLdalpha0 <- NULL
		}
		
		if (nX){
#  traiter les Intercept_t_NPH
			dLdbeta0 <- NULL
			for(i in 1:nX){
				if ( Intercept_t_NPH[i] ){
					dLdbeta0 <- c(dLdbeta0,  crossprod(X[,i] ,  IntbF * weights))
				}
				else {
					dLdbeta0 <- c(dLdbeta0, crossprod(X[,i] ,  IntbF[,indx_without_intercept] * weights))
				}
			}
		}
		else {
			dLdbeta0 <- NULL
		}
		
		if (nZ) { 
			baseIntbF <- IntbF  %*% t(tBeta)
			dLdalpha <- rep(0,getNparam(Z) )
			indZ <- getIndex(Z)
			
			for(iZ in 1:nZ){
				if ( debug.gr > 200 ){
					
				}
				dLdalpha[indZ[iZ,1]:indZ[iZ,2]] <- crossprod(Z@DM[,indZ[iZ,1]:indZ[iZ,2]], baseIntbF[,iZ] * weights )
			}
			dLdbeta <- c(crossprod((IntbF[,-1, drop=FALSE]),Zalpha * weights))
		}
		else {
			dLdalpha <- NULL
			dLdbeta <- NULL
		}
	} # end weights!=NULL
	else {
# d<dgamma0
		if(is.null(Spline_t0)){
			dLdgamma0 <- NULL
		}
		else {
			dLdgamma0 <- apply(   YT0 * F - Intb0 , 2, sum)
		}
		if (nX0) {
			dLdalpha0 <- crossprod(X0 , F - PHterm* NPHterm )
		}
		else {
			dLdalpha0 <- NULL
		}
		
		if (nX){
#  traiter les Intercept_t_NPH
			dLdbeta0 <- NULL
			for(i in 1:nX){
				if ( Intercept_t_NPH[i] ){
					dLdbeta0 <- c(dLdbeta0,  crossprod(X[,i] ,  IntbF))
				}
				else {
					dLdbeta0 <- c(dLdbeta0, crossprod(X[,i] ,  IntbF[,indx_without_intercept]))
				}
			}
		}
		else {
			dLdbeta0 <- NULL
		}
		
		if (nZ) { 
			baseIntbF <- IntbF  %*% t(tBeta)
			dLdalpha <- rep(0,getNparam(Z) )
			indZ <- getIndex(Z)
			
			for(iZ in 1:nZ){
				dLdalpha[indZ[iZ,1]:indZ[iZ,2]] <- crossprod(Z@DM[,indZ[iZ,1]:indZ[iZ,2]], baseIntbF[,iZ] )
			}
			dLdbeta <- c(crossprod((IntbF[,-1, drop=FALSE]),Zalpha ))
		}
		else {
			dLdalpha <- NULL
			dLdbeta <- NULL
		}
	} # end weights==NULL
	
	
	
	rep <- c(dLdgamma0,          
			dLdalpha0,          
			dLdbeta0,          
			dLdalpha,          
			dLdbeta )
	
	if(debug.gr){
		attr(rep, "intb0") <- Intb0
		attr(rep, "intb") <- Intb
		attr(rep, "intbF") <- IntbF
		attr(rep, "F") <- F 
		attr(rep, "YT0") <- YT0 
		attr(rep, "YT") <- YT
		attr(rep, "RatePred") <-  RatePred
		if(debug.gr > 1000){
			cat("grad value and parameters :", "\n") 
			print(cbind(    c(dLdgamma0,          
									dLdalpha0,          
									dLdbeta0,          
									dLdalpha,          
									dLdbeta ), allparam))
			
		}
	}
	rep
}

Try the flexrsurv package in your browser

Any scripts or data that you put into this service are public.

flexrsurv documentation built on June 7, 2023, 5:09 p.m.