R/3_ant_admin.R

Defines functions fitNtests_ACO eval_houtv_ACO eval_loocv_ACO getLog_ACO vec2DFrame_ACO getCall_ACO getActiveIn_ACO formatSol_ACO setEnvir_ACO setParams_ACO master_ACO

# ==========================================================================================================
# S4 class for the log of fgpm_factory optimizations using the ACO algorithm
# ==========================================================================================================
#' @title S4 class for log of models explored by ant colony in funGp
#' @description Register of model structures and their performance statistics, if available.
#'
#' @slot sols Object of class \code{"data.frame"}. Compendium of model structures arranged by rows. Each
#'   column is linked to one structural parameter of the model such as the state of one variable (inactive,
#'   active) or the type of kernel function.
#' @slot args Object of class \code{"list"}. Compendium of model structures represented by objects of class
#'   \code{"\linkS4class{modelCall}"}.
#' @slot fitness Object of class \code{"numeric"}. Performance statistic of each model, if available.
#'
#' @author José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer
#'
#' @rdname antsLog-class
#' @export
setClass("antsLog",
         representation(
           sols = "data.frame",            # compendium of model structures with selections as factor levels
           args = "list",                  # compendium of model structures with selections as modelCall objects
           fitness = "numeric"             # performance statistic of each model, if available
         ),
         validity = function(object) {TRUE})
# ==========================================================================================================



# ==========================================================================================================
# Master function to process ACO tasks
# ==========================================================================================================
master_ACO <- function(sIn, fIn, sOut, ind.vl, solspace, setup, extargs, time.str, time.lim, trace, pbars, par.clust) {
  # set heuristic parameters based on defaults and user specifications
  param <- setParams_ACO(setup, length(fIn))

  # set pheromones based on the solution space and initial parameters
  if (trace) message("** Initializing decision network...")
  phero <- setEnvir_ACO(solspace, param)

  # perform exploration
  if (trace) message("** Optimizing structural parameters...")
  res <- run_ACO(sIn, fIn, sOut, ind.vl, param, phero, solspace$sp.base, extargs, time.str, time.lim, trace, pbars, par.clust)

  # correct the howCalled of best model
  res$model@howCalled@string <- getCall_ACO(res$sol.vec, sIn, fIn, res$sol.args, solspace$sp.base, extargs)

  # format solution vector
  res$sol.vec <- vec2DFrame_ACO(res$sol.vec, sIn, fIn)

  # fill antLog for successfull ants
  res$log.suc <- getLog_ACO(sIn, fIn, res$log.suc, res$log.fitness, solspace$sp.base, extargs)

  # fill antLog for crashed ants if any
  if(length(res$log.cra) > 0) {
    res$log.cra <- getLog_ACO(sIn, fIn, res$log.cra, numeric(), solspace$sp.base, extargs)
  } else {
    res$log.cra <- new("antsLog")
  }

  return(res)
}
# ==========================================================================================================



# ==========================================================================================================
# Function to prepare the parameters of the heuristic considering the user inputs
# ==========================================================================================================
setParams_ACO <- function(setup, df) {
  if (!is.null(setup$n.iter)) n.iter <- setup$n.iter else n.iter <- 15
  if (!is.null(setup$n.pop)) n.pop <- setup$n.pop else n.pop <- 10
  if (!is.null(setup$tao0)) tao0 <- setup$tao0 else tao0 <- .1
  if (!is.null(setup$dop.s)) dop.s <- setup$dop.s else dop.s <- 1#tao0
  if (!is.null(setup$dop.f)) dop.f <- setup$dop.f else dop.f <- 1#tao0
  if (!is.null(setup$delta.f)) {
    if (length(setup$delta.f) == df) {
      delta.f <- setup$delta.f
    } else if (length(setup$delta.f) == 1) {
      delta.f <- rep(setup$delta.f, df)
    } else {
      stop("The parameter delta.f should be either of length one or of length equal to the number of functional inputs.")
    }
  } else {
    delta.f <- rep(2, max(1,df))
  }
  if (!is.null(setup$dispr.f)) {
    if (length(setup$dispr.f) == df) {
      dispr.f <- setup$dispr.f
    } else if (length(setup$dispr.f) == 1) {
      dispr.f <- rep(setup$dispr.f, df)
    } else {
      stop("The parameter dispr.f should be either of length one or of length equal to the number of functional inputs.")
    }
  } else {
    dispr.f <- rep(1.4, max(1,df))
  }
  if (!is.null(setup$q0)) q0 <- setup$q0 else q0 <- .95
  if (!is.null(setup$rho.l)) rho.l <- setup$rho.l else rho.l <- .1
  if (!is.null(setup$u.gbest)) u.gbest <- setup$u.gbest else u.gbest <- F
  if (!is.null(setup$n.ibest)) n.ibest <- setup$n.ibest else n.ibest <- 1
  if (!is.null(setup$rho.g)) rho.g <- setup$rho.g else rho.g <- .1

  params <- list(n.iter = n.iter, n.pop = n.pop, tao0 = tao0, dop.s = dop.s, dop.f = dop.f,
                 delta.f = delta.f, dispr.f = dispr.f, q0 = q0, rho.l = rho.l,
                 u.gbest = u.gbest, n.ibest = n.ibest, rho.g = rho.g)

  return(params)
}
# ==========================================================================================================



# ==========================================================================================================
# Function to generate the initial pheromone load
# ==========================================================================================================
#' @importFrom scales rescale
setEnvir_ACO <- function(solspace, param) {
  # recover base and user-defined solution space
  sp.base <- solspace$sp.base
  sp.user <-solspace$sp.user

  # recover base solution space
  s.state.0 <- sp.base$s.state
  f.state.0 <- sp.base$f.state
  f.dims.0 <- sp.base$f.dims
  f.dist.0 <- sp.base$f.dist
  f.bas.0 <- sp.base$f.bas
  k.type.0 <- sp.base$k.type

  # recover user-defined solution space
  s.state.u <- sp.user$s.state
  f.state.u <- sp.user$f.state
  f.dims.u <- sp.user$f.dims
  f.dist.u <- sp.user$f.dist
  f.bas.u <- sp.user$f.bas
  k.type.u <- sp.user$k.type

  # recover required parameters from heuristic setup
  tao0 <- param$tao0
  dop.s <- param$dop.s
  dop.f <- param$dop.f
  delta.f <- param$delta.f
  dispr.f <- param$dispr.f

  # extract input dimensions
  ds <- sp.user$ds
  df <- sp.user$df

  # create pheromone list
  phero <- list()
  layers <- c()
  if (ds > 0) {
    # set up pheromones related to scalar inputs
    if (s.state.u[1] == 0) {
      phero[[1]] <- matrix(c(tao0, tao0/dop.s), ncol = 2, byrow = TRUE)
    } else {
      phero[[1]] <- matrix(c(1, 0), ncol = 2) # set up initial pheromones
    }
    rownames(phero[[1]]) <- "Orig"
    colnames(phero[[1]]) <- c("Active", "Inactive")
    layers <- c(layers, paste("State X", 1, sep =""))

    if (ds > 1) {
      for (i in 2:ds){
        # state of scalar input i
        # ____________________________________________________________________________________
        if (s.state.u[i] == 0) {
          phero[[i]] <- matrix(rep(c(tao0, tao0/dop.s), 2), nrow = 2, byrow = TRUE)
        } else {
          phero[[i]] <- matrix(rep(c(1, 0), 2), nrow = 2, byrow = TRUE) # set up initial pheromones
        }
        # set up colnames
        colnames(phero[[i]]) <- rownames(phero[[i]]) <- c("Active", "Inactive")
        # ____________________________________________________________________________________
        layers <- c(layers, paste("State X", i, sep = ""))
      }
    }
  }

  # set up visibility and pheromones related to functional inputs
  if (df > 0) {
    for (j in 1:df) {
      # state of functional input j
      # ____________________________________________________________________________________
      i <- length(phero) + 1
      if (all(i == 1, j == 1)) {
        if (f.state.u[j] == 0) { # free, distribute pheromones and assign default visibilities
          phero[[i]] <- matrix(c(tao0, tao0/dop.f), ncol = 2)
        } else { # fixed, put all load in first colum
          phero[[i]] <- matrix(c(1, 0), ncol = 2) # set up initial pheromones
        }
        rownames(phero[[i]]) <- "Orig"
        colnames(phero[[i]]) <- c("Active", "Inactive")

      } else {
        if (f.state.u[j] == 0) { # free, distribute pheromones and assign default visibilities
          phero[[i]] <- matrix(rep(c(tao0, tao0/dop.f), 2), nrow = 2, byrow = TRUE)
        } else { # fixed, put all load in first colum
          phero[[i]] <- matrix(rep(c(1, 0), 2), nrow = 2, byrow = TRUE)
        }
        # <--> names
        rownames(phero[[i]]) <- colnames(phero[[i-1]])
        colnames(phero[[i]]) <- c("Active", "Inactive")
      }
      layers <- c(layers, paste("State F", j, sep =""))
      # ____________________________________________________________________________________


      # distance for functional input j
      # ____________________________________________________________________________________
      i <- length(phero) + 1 # i <- length(visib) + 1
      nr <- ncol(phero[[i-1]]) # nr <- ncol(visib[[i-1]])
      # <--> identify active levels
      v <- rep(0, length(f.dist.0[[j]]))
      t <- unname(sapply(f.dist.u[[j]], function(x) which(f.dist.0[[j]] == x)))
      # <--> assign initial pheromones
      if (length(t) == 1)  v[t] <- 1 else v[t] <- tao0
      phero[[i]] <- matrix(rep(v, nr), nrow = nr, byrow = TRUE)
      # <--> names
      rownames(phero[[i]]) <- colnames(phero[[i-1]])
      colnames(phero[[i]]) <- f.dist.0[[j]]
      layers <- c(layers, paste("Dist. FI", j, sep =""))
      # ____________________________________________________________________________________


      # dimension for functional input j
      # ____________________________________________________________________________________
      i <- length(phero) + 1 # i <- length(visib) + 1
      nr <- ncol(phero[[i-1]]) # nr <- ncol(visib[[i-1]])
      # <--> identify active levels
      vgro <- vind <- rep(0, length(f.dims.0[[j]])) # zero vector with as many elements as potential dimensions in the original set
      t <- unname(sapply(f.dims.u[[j]], function(x) which(f.dims.0[[j]] == x))) # locations of dimensions still active
      # <--> assign initial pheromones
      if (length(t) == 1) {
        vind[t] <- vgro[t] <- 1
      } else {
        vgro[t] <- tao0
        if (0 %in% f.dims.u[[j]]) {
          l <- decay(tao0 = tao0, delta = delta.f[j], dispr = dispr.f[j], k = max(f.dims.u[[j]]), doplot = FALSE, deliver = TRUE)
        } else {
          l <- decay(tao0 = tao0, delta = delta.f[j], dispr = dispr.f[j], k = max(f.dims.u[[j]]), doplot = FALSE, deliver = TRUE)[-1]
        }
        vind[t] <- l
      }
      # <--> wrap visibility
      phero[[i]] <- rbind(vgro, vind)
      # <--> names
      rownames(phero[[i]]) <- colnames(phero[[i-1]])
      colnames(phero[[i]]) <- f.dims.0[[j]]
      layers <- c(layers, paste("Dim. FI", j, sep =""))
      # ____________________________________________________________________________________


      # basis for functional input j
      # ____________________________________________________________________________________
      i <- length(phero) + 1
      nr <- ncol(phero[[i-1]])
      # <--> identify active levels
      v <- rep(0, length(f.bas.0[[j]])) # zero vector with as many elements as basis families in the original set
      t <- unname(sapply(f.bas.u[[j]], function(x) which(f.bas.0[[j]] == x))) # locations of basis still active
      # <--> assign initial pheromones
      if (length(t) == 1)  v[t] <- 1 else v[t] <- tao0
      phero[[i]] <- matrix(rep(v, nr), nrow = nr, byrow = TRUE)
      # <--> names
      colnames(phero[[i]]) <- f.bas.0[[j]]
      rownames(phero[[i]]) <- f.dims.0[[j]]
      layers <- c(layers, paste("Basis FI", j, sep =""))
      # ____________________________________________________________________________________
    }
  }

  # kernel function
  # ____________________________________________________________________________________
  i <- length(phero) + 1
  nr <- ncol(phero[[i-1]])
  # <--> identify active levels
  v <- rep(0, length(k.type.0)) # zero vector with as many elements as kernel functions in the original set
  t <- unname(sapply(k.type.u, function(x) which(k.type.0 == x))) # locations of kernels still active
  # <--> assign initial pheromones
  if (length(t) == 1)  v[t] <- 1 else v[t] <- tao0
  phero[[i]] <- matrix(rep(v, nr), nrow = nr, byrow = TRUE)
  # <--> names
  rownames(phero[[i]]) <- colnames(phero[[i-1]])
  colnames(phero[[i]]) <- k.type.0
  layers <- c(layers, "Kernel")
  # ____________________________________________________________________________________

  # set names to pheromone list
  names(phero) <- layers

  # return(list(phero = phero, visib = visib))
  return(phero)
}
# ==========================================================================================================



# ==========================================================================================================
# Function to transform ants into data structures for fgpm
# ==========================================================================================================
formatSol_ACO <- function(ant, sIn, fIn, base) {
  # recover input dimensions
  if (!is.null(sIn)) ds <- ncol(sIn) else ds <- 0
  if (!is.null(fIn)) df <- length(fIn) else df <- 0

  # recover base components
  s.state <- base$s.state
  f.state <- base$f.state
  f.dims <- base$f.dims
  f.dist <- base$f.dist
  f.bas <- base$f.bas
  k.type <- base$k.type

  # remove inactive scalar variables
  if (ds > 0) {
    s.active.ac <- which(ant[1:ds] == 1) # index of active scalar inputs
    if (length(s.active.ac) > 0) {
      sIn.ac <- sIn[,s.active.ac, drop = FALSE]
    } else {
      sIn.ac <- NULL
    }
  } else {
    sIn.ac <- NULL
  }
  piv <- ds

  defargs <- formals(fgpm) # in case they are required below
  if (df > 0) {
    f.active.ac <- c() # index of active functional inputs
    f.dist.ac <- rep(0, df) # distance for each active functional input
    f.dims.ac <- rep(0, df) # dimension of each active functional input
    f.bas.ac <- rep(0, df) # basis function for each active functional input
    for (j in 1:df) {
      piv <- piv + 1
      if (ant[piv] == 1) f.active.ac <- c(f.active.ac, j)
      piv <- piv + 1
      if (ant[piv] == -1) { # assign default value
        f.dist.ac[[j]] <- defargs$f_disType
        f.dims.ac[[j]] <- defargs$f_pdims
        f.bas.ac[[j]] <- defargs$f_basType
        piv <- piv + 2
      } else {
        f.dist.ac[[j]] <- f.dist[[j]][ant[piv]]
        piv <- piv + 1
        f.dims.ac[[j]] <- ant[piv]
        piv <- piv + 1
        f.bas.ac[[j]] <- f.bas[[j]][ant[piv]]
      }
    }
    if (length(f.active.ac) > 0) {
      fIn.ac <- fIn[f.active.ac]
      f.dist.ac <- f.dist.ac[f.active.ac]
      f.dims.ac <- f.dims.ac[f.active.ac]
      f.bas.ac <- f.bas.ac[f.active.ac]

    } else { # set by default values
      fIn.ac <- defargs$fIn
      f.dist.ac <- defargs$f_disType
      f.dims.ac <- defargs$f_pdims
      f.bas.ac <- defargs$f_basType
    }
  } else { # set by default values
    fIn.ac <- defargs$fIn
    f.dist.ac <- defargs$f_disType
    f.dims.ac <- defargs$f_pdims
    f.bas.ac <- defargs$f_basType
    piv <- piv + df * 4
  }
  piv <- piv + 1
  k.type.ac <- k.type[ant[piv]]

  return(list(sIn = sIn.ac, fIn = fIn.ac, kerType = k.type.ac, f_disType = f.dist.ac, f_pdims = f.dims.ac, f_basType = f.bas.ac))
}
# ==========================================================================================================



# ==========================================================================================================
# Function to identify active functional inputs in an ant
# ==========================================================================================================
getActiveIn_ACO <- function(ant, sIn, fIn, base) {
  # recover input dimensions
  if (!is.null(sIn)) ds <- ncol(sIn) else ds <- 0
  if (!is.null(fIn)) df <- length(fIn) else df <- 0

  # recover base components
  s.state <- base$s.state
  f.state <- base$f.state

  # index of active scalar inputs
  s.active.ac <- NULL
  if (ds > 0) {
    act <- unname(which(ant[1:ds] == 1))
    if (length(act) > 0) {
      s.active.ac <- act
    }
  }

  # index of active functional inputs
  f.active.ac <- NULL
  if (df > 0) {
    act <- unname(which(ant[grepl("State F", names(ant))] == 1))
    if (length(act) > 0) {
      f.active.ac <- act
    }
  }

  return(list(s.active = s.active.ac, f.active = f.active.ac))
}
# ==========================================================================================================



# ==========================================================================================================
# Function to reconstructu the fgpm call for a given ant
# ==========================================================================================================
getCall_ACO <- function(ant, sIn, fIn, args, base, extargs) {
  # recover input dimensions
  if (!is.null(sIn)) ds <- ncol(sIn) else ds <- 0
  if (!is.null(fIn)) df <- length(fIn) else df <- 0

  # identify used inputs
  in.used <- getActiveIn_ACO(ant, sIn, fIn, base)
  s.used <- in.used$s.active
  f.used <- in.used$f.active

  # set string for scalar inputs
  if (!is.null(s.used)) {
    if (length(s.used) == ncol(sIn)) {
      s.str <- "sIn = sIn"
    } else if (length(s.used) == 1) {
      s.str <- paste("sIn = sIn[,", s.used, ",drop=FALSE]", sep = "")
    } else if (all(diff(s.used) == 1)) {
      s.str <- paste("sIn = sIn[,", paste(range(s.used), collapse = ":"), "]", sep = "")
    } else {
      s.str <- paste("sIn = sIn[,c(", paste(s.used, collapse = ","), ")]", sep = "")
    }
  } else {
    s.str <- NULL
  }

  # set string for functional inputs
  if (!is.null(f.used)) {
    if (length(f.used) == length(fIn)) {
      f.str <- "fIn = fIn"
    } else if (length(f.used) == 1) {
      f.str <- paste("fIn = fIn[", f.used, "]", sep = "")
    } else if (all(diff(f.used) == 1)) {
      f.str <- paste("fIn = fIn[", paste(range(f.used), collapse = ":"), "]", sep = "")
    } else {
      f.str <- paste("fIn = fIn[c(", paste(f.used, collapse = ","), ")]", sep = "")
    }

    # prepare f_disType string
    if (length(args$f_disType) == 1) {
      f_disType.str <- paste('f_disType = "', args$f_disType, '"', sep = "")
    } else if (length(unique(args$f_disType)) > 1) {
      f_disType.str <- paste('f_disType = c("', paste(args$f_disType, collapse = '", "'), '")', sep = "")
    } else {
      f_disType.str <- paste('f_disType = "', args$f_disType[1], '"', sep = "")
    }

    # prepare f_pdims string
    if (length(args$f_pdims) == 1) {
      f_pdims.str <- paste("f_pdims = ", args$f_pdims, sep = "")
    } else if (length(unique(args$f_pdims)) > 1) {
      f_pdims.str <- paste('f_pdims = c(', paste(args$f_pdims, collapse = ', '), ')', sep = "")
    } else {
      f_pdims.str <- paste("f_pdims = ", args$f_pdims[1], sep = "")
    }

    # prepare f_basType string
    if (length(args$f_basType) == 1) {
      f_basType.str <- paste('f_basType = "', args$f_basType, '"', sep = "")
    } else if (length(unique(args$f_basType)) > 1) {
      f_basType.str <- paste('f_basType = c("', paste(args$f_basType, collapse = '", "'), '")', sep = "")
    } else {
      f_basType.str <- paste('f_basType = "', args$f_basType[1], '"', sep = "")
    }

  } else {
    f.str <- f_disType.str <- f_pdims.str <- f_basType.str <- NULL
  }

  # prepare sOut string
  sy.str <- "sOut = sOut"

  # prepare kerType string
  kerType.str <- paste('kerType = "', args$kerType, '"', sep = "")

  # set strings for extra arguments: nugget, n.starts, n.presample
  defargs <- formals(fgpm)
  if (extargs$nugget != defargs$nugget) nugg.str <- paste("nugget = ", extargs$nugget, sep = "") else nugg.str <- NULL
  if (extargs$n.starts != defargs$n.starts) n.starts.str <- paste("n.starts = ", extargs$n.starts, sep = "") else n.starts.str <- NULL
  if (extargs$n.presample != defargs$n.presample) {
    n.presample.str <- paste("n.presample = ", extargs$n.presample, sep = "")
  } else {
    n.presample.str <- NULL
  }

  # merge strings to produce model call
  full.str <- c(s.str, f.str, sy.str, f_disType.str, f_pdims.str, f_basType.str, kerType.str, nugg.str, n.starts.str, n.presample.str)
  modcall <- paste("fgpm(", paste(full.str, collapse = ", "), ")", sep = "")

  return(modcall)
}
# ==========================================================================================================



# ==========================================================================================================
# Function to translate ants coded levels to lexicographic tags in data.frame format
# ==========================================================================================================
vec2DFrame_ACO <- function(sol.vec, sIn, fIn) {
  # recover input dimensions
  if (!is.null(sIn)) ds <- ncol(sIn) else ds <- 0
  if (!is.null(fIn)) df <- length(fIn) else df <- 0

  names <- vals <- rep(0,length(sol.vec))
  if (ds > 0) {
    for (i in 1:ds) {
      names[i] <- paste("State_X", i, sep = "")
      vals[i] <- c("On", "Off")[sol.vec[i]]
    }
    piv <- ds
  }

  if (df > 0) {
    piv <- max(0, ds)
    for (i in 1:df) {
      piv <- piv + 1
      names[piv] <- paste("State_F", i, sep = "")
      vals[piv] <- c("On", "Off")[sol.vec[piv]]

      piv <- piv + 1
      names[piv] <- paste("Distance_F", i, sep = "")
      if (sol.vec[piv] < 0) vals[piv] <- "--" else vals[piv] <- c("L2_bygroup", "L2_byindex")[sol.vec[piv]]

      piv <- piv + 1
      names[piv] <- paste("Dim_F", i, sep = "")
      if (sol.vec[piv] < 0) vals[piv] <- "-" else vals[piv] <- sol.vec[piv]

      piv <- piv + 1
      names[piv] <- paste("Prj_basis_F", i, sep = "")
      if (sol.vec[piv] < 0) vals[piv] <- "--" else vals[piv] <- c("B-splines", "PCA")[sol.vec[piv]]
    }
  }

  piv <- piv + 1
  names[piv] <- "Kernel"
  vals[piv] <- c("gauss", "matern5_2", "matern3_2")[sol.vec[piv]]

  # data.frame-ize
  vals <- data.frame(matrix(vals, nrow = 1))
  names(vals) <- names

  return(vals)
}
# ==========================================================================================================



# ==========================================================================================================
# Function to build ant logs (success and crashes)
# ==========================================================================================================
getLog_ACO <- function(sIn, fIn, log.vec, log.fitness, base, extargs) {
  mylog <- new("antsLog")
  args <- list()
  for (i in 1:nrow(log.vec)) {
    mc <- new("modelCall")
    mc@string <- getCall_ACO(log.vec[i,], sIn, fIn, formatSol_ACO(log.vec[i,], sIn, fIn, base), base, extargs)
    args[[i]] <- mc
  }
  mylog@args <- args
  mylog@sols <- do.call("rbind", apply(log.vec, 1, function(x) vec2DFrame_ACO(x, sIn, fIn)))
  mylog@fitness <- log.fitness
  return(mylog)
}
# ==========================================================================================================



# ==========================================================================================================
# Function to evaluate ants for the Q2loocv statistic
# ==========================================================================================================
#' @importFrom foreach foreach setDoPar
#' @importFrom utils txtProgressBar setTxtProgressBar
#' @importFrom doFuture registerDoFuture
#' @importFrom doRNG registerDoRNG `%dorng%`
#' @importFrom future plan cluster
#' @importFrom progressr with_progress progressor
eval_loocv_ACO <- function(sIn, fIn, sOut, extargs, base, ants, time.str, time.lim, pbars, par.clust) {
  # recover population size
  n.pop <- nrow(ants)

  if (!is.null(par.clust)) {
    # register parallel backend
    oldDoPar <- registerDoFuture()
    on.exit(with(oldDoPar, setDoPar(fun = fun, data = data, info = info)), add = TRUE)
    # registerDoFuture()
    # registerDoRNG()

    # plan(cluster, workers = par.clust)
    oplan <- plan(cluster, workers = par.clust)
    on.exit(plan(oplan), add = TRUE)

    # evaluate the ants as models
    with_progress({
      if (pbars) p <- progressor(along = 1:n.pop, auto_finish = FALSE)
      result <- foreach(i = 1:n.pop, .errorhandling = "pass") %dorng% {
        dt <- difftime(Sys.time(), time.str, units = 'secs')
        if (dt < time.lim) {
          # build and validate the model
          amf <- fitNtests_ACO(ants[i,], sIn, fIn, sOut, extargs, base)
          if (pbars) p()
          return(amf)
        } else {
          if (pbars) p()
          return(NULL)
        }
      }
    })

  } else {
    # set up progress bar
    if (pbars) pb <- txtProgressBar(min = 0, max = n.pop, style = 3)

    # evaluate the ants as models
    result <- list()
    for (i in 1:n.pop) {
      # build and validate the model
      result[[i]] <- fitNtests_ACO(ants[i,], sIn, fIn, sOut, extargs, base)
      if (pbars) setTxtProgressBar(pb, i)

      # check if we are still on time
      dt <- difftime(Sys.time(), time.str, units = 'secs')
      if (dt >= time.lim) {
        if (i < n.pop) {
          result[(i+1):n.pop] <- NULL
          if (pbars) setTxtProgressBar(pb, n.pop)
        }
        break
      }
    }
    if (pbars) close(pb)
  }
  return(result)
}
# ==========================================================================================================



# ==========================================================================================================
# Function to evaluate ants for the Q2hout statistic
# ==========================================================================================================
#' @importFrom foreach foreach setDoPar
#' @importFrom utils txtProgressBar setTxtProgressBar
#' @importFrom doFuture registerDoFuture
#' @importFrom doRNG registerDoRNG `%dorng%`
#' @importFrom future plan cluster
#' @importFrom progressr with_progress progressor
eval_houtv_ACO <- function(sIn, fIn, sOut, extargs, base, ants, ind.vl, time.str, time.lim, pbars, par.clust) {
  # recover population size and number of replicates
  n.pop <- nrow(ants)
  n.rep <- ncol(ind.vl)

  if (!is.null(par.clust)) {
    # register parallel backend
    oldDoPar <- registerDoFuture()
    on.exit(with(oldDoPar, setDoPar(fun = fun, data = data, info = info)), add = TRUE)
    # registerDoFuture()
    # registerDoRNG()

    # plan(cluster, workers = par.clust)
    oplan <- plan(cluster, workers = par.clust)
    on.exit(plan(oplan), add = TRUE)

    # evaluate the ants as models
    with_progress({
      if (pbars) p <- progressor(along = 1:n.pop, auto_finish = FALSE)
      result <- foreach(i = 1:n.pop, .errorhandling = "pass") %dorng% {
        dt <- difftime(Sys.time(), time.str, units = 'secs')
        if (dt < time.lim) {
          sub_result <- list()
          for (j in 1:n.rep) {
            # split data into training and validation
            data <- splitData(sIn, fIn, sOut, ind.vl[,j])

            # identify active inputs of both types
            active <- getActiveIn_ACO(ants[i,], sIn, fIn, base)

            # build and validate the model
            sub_result[[j]] <- fitNtests_ACO(ants[i,], data$sIn.tr, data$fIn.tr, data$sOut.tr, extargs, base,
                                             ind.vl, data$sIn.vl, data$fIn.vl, data$sOut.vl, active)

            # check if we are still on time
            dt <- difftime(Sys.time(), time.str, units = 'secs')
            if (dt >= time.lim) {
              if (j < n.rep) {
                sub_result[(j+1):n.rep] <- NULL
              }
              break
            }
          }

          # extract complete evaluations
          done <- which(!sapply(sub_result, is.null))
          argsList <- lapply(sub_result[done], `[[`, 1)
          modelList <- lapply(sub_result[done], `[[`, 2)
          fitnessVec <- sapply(sub_result[done], `[[`, 3)
          antMat <- t(sapply(sub_result[done], `[[`, 4))

          # identify crashes and usable models
          ids.cr <- which(is.na(fitnessVec))
          ids.ok <- which(!is.na(fitnessVec))

          # remove crashes and compute average model fitness
          if (length(ids.ok) > 0) {
            fitness <- mean(fitnessVec[ids.ok])
            piv <- sample.vec(which(fitnessVec == max(fitnessVec)))
            args <- argsList[[piv]]
            model <- modelList[[piv]]
            ant <- antMat[piv,]
            amf <- list(args, model, fitness, ant)
          } else {
            amf <- NULL
          }
          if (pbars) p()
          return(amf)
        } else {
          if (pbars) p()
          return(NULL)
        }
      }
    })

  } else {
    # set up progress bar
    if (pbars) pb <- txtProgressBar(min = 0, max = n.pop, style = 3)

    # evaluate the ants as models
    result <- list()
    for (i in 1:n.pop) {
      sub_result <- list()
      for (j in 1:n.rep) {
        # split data into training and validation
        data <- splitData(sIn, fIn, sOut, ind.vl[,j])

        # identify active inputs of both types
        active <- getActiveIn_ACO(ants[i,], sIn, fIn, base)

        # build and validate the model
        sub_result[[j]] <- fitNtests_ACO(ants[i,], data$sIn.tr, data$fIn.tr, data$sOut.tr, extargs, base,
                                         ind.vl, data$sIn.vl, data$fIn.vl, data$sOut.vl, active)

        # check if we are still on time
        dt <- difftime(Sys.time(), time.str, units = 'secs')
        if (dt >= time.lim) {
          if (j < n.rep) {
            sub_result[(j+1):n.rep] <- NULL
          }
          break
        }
      }

      # extract complete evaluations
      done <- which(!sapply(sub_result, is.null))
      argsList <- lapply(sub_result[done], `[[`, 1)
      modelList <- lapply(sub_result[done], `[[`, 2)
      fitnessVec <- sapply(sub_result[done], `[[`, 3)
      antMat <- t(sapply(sub_result[done], `[[`, 4))

      # identify crashes and usable models
      ids.cr <- which(is.na(fitnessVec))
      ids.ok <- which(!is.na(fitnessVec))

      # remove crashes and compute average model fitness
      if (length(ids.ok) > 0) {
        fitness <- mean(fitnessVec[ids.ok])
        piv <- sample.vec(which(fitnessVec == max(fitnessVec)))
        args <- argsList[[piv]]
        model <- modelList[[piv]]
        ant <- antMat[piv,]
        result[[i]] <- list(args, model, fitness, ant)
      } else {
        result[[i]] <- NULL
      }
      if (pbars) setTxtProgressBar(pb, i)

      dt <- difftime(Sys.time(), time.str, units = 'secs')
      if (dt >= time.lim) {
        if (i < n.pop) {
          result[(i+1):n.pop] <- NULL
          if (pbars) setTxtProgressBar(pb, n.pop)
        }
        break
      }
    }
    if (pbars) close(pb)
  }
  return(result)
}
# ==========================================================================================================



# ==========================================================================================================
# Function that makes the actual call to fgpm in order to build each model sent by the ants
# ==========================================================================================================
fitNtests_ACO <- function(ant, sIn, fIn, sOut, extargs, base,
                            ind.vl = NULL, sIn.vl = NULL, fIn.vl = NULL, sOut.vl = NULL, active = NULL) {
  args <- formatSol_ACO(ant, sIn, fIn, base)
  poterr <- tryCatch(
    {
      model <- suppressMessages(fgpm(sIn = args$sIn, fIn = args$fIn, sOut = sOut, kerType = args$kerType,
                                     f_disType = args$f_disType, f_pdims = args$f_pdims, f_basType = args$f_basType,
                                     nugget = extargs$nugget, n.starts = extargs$n.starts, n.presample = extargs$n.presample,
                                     trace = F, pbars = F, control.optim = list(trace = 0)))
    },
    error = function(e) e
  )

  # if the model was succesfully built, compute model fitness
  if (!inherits(poterr, "error")) {
    fitness <- getFitness(model, sIn.vl, fIn.vl, sOut.vl, active)
  } else {
    model <- poterr
    fitness <- NA
  }
  return(list(args[-(1:2)], model, fitness, ant))
}
# ==========================================================================================================



# ==========================================================================================================
# Function to obtain the indices of the variables kept active in some structure delivered by the factory
# ==========================================================================================================
#' @title Indices of active inputs in a given model structure
#' @description The \link[funGp]{fgpm_factory} function returns an object of class \code{"\linkS4class{Xfgpm}"}
#'   with the function calls of all the evaluated models stored in the \code{@log.success@args} and
#'   \code{@log.crashes@args} slots. The \code{which_on} function interprets the arguments linked to any
#'   structural configuration and returns a list with two elements: (i) an \code{array} of indices of the scalar
#'   inputs kept active; and (ii) an \code{array} of indices of the functional inputs kept active.
#'
#' @param sIn An optional matrix of scalar input coordinates with all the orignal scalar input variables.
#'   This is used only to know the total number of scalar input variables. Any \code{matrix} with as many
#'   columns as original scalar input variables could be used instead.
#' @param fIn An optional list of functional input coordinates with all the original functional input
#'   variables. This is used only to know the total number of functional input variables. Any \code{list}
#'   with as many elements as original functional input variables could be used instead.
#' @param args An object of class \code{"\linkS4class{modelCall}"}, which specifies the model structure for
#'   which the active inputs should be extracted.
#'
#' @return An object of class \code{"list"}, containing the following information extracted from the
#'   \emph{args} parameter: (i) an array of indices of the scalar inputs kept active; and (ii) an array of
#'   indices of the functional inputs kept active.
#'
#' @author José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer
#'
#' @references Betancourt, J., Bachoc, F., Klein, T., Idier, D., Rohmer, J., and Deville, Y. (2024),
#' "funGp: An R Package for Gaussian Process Regression with Scalar and Functional Inputs".
#' \emph{Journal of Statistical Software}, \strong{109}, 5, 1--51.
#'  (\doi{https://doi.org/10.18637/jss.v109.i05})
#'
#' @references Betancourt, J., Bachoc, F., Klein, T., Idier, D., Rohmer, J., and Deville, Y. (2024),
#' "funGp: An R Package for Gaussian Process Regression with Scalar and Functional Inputs".
#' \emph{Journal of Statistical Software}, \strong{109}, 5, 1--51.
#'  (\doi{https://doi.org/10.18637/jss.v109.i05})
#'
#' @references Betancourt, J., Bachoc, F., and Klein, T. (2020),
#' R Package Manual: "Gaussian Process Regression for Scalar and Functional Inputs with funGp - The in-depth tour".
#' \emph{RISCOPE project}.
#' \href{https://hal.science/hal-02536624}{[HAL]}
#'
#' @seealso \strong{*} \link[funGp]{get_active_in} for details on how to obtain the data structures linked to the
#' active inputs;
#' @seealso \strong{*} \linkS4class{modelCall} for details on the \emph{args} argument;
#' @seealso \strong{*} \link[funGp]{fgpm_factory} for funGp heuristic model selection;
#' @seealso \strong{*} \linkS4class{Xfgpm} for details on object delivered by \link[funGp]{fgpm_factory}.
#'
#' @examples
#' # extracting the indices of the active inputs in an optimized model________________________
#' # use precalculated Xfgpm object named xm
#' # active inputs in the best model
#' xm@log.success@args[[1]] # the full fgpm call
#' set.seed(100)
#' n.tr <- 32
#' sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),
#' x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
#' x5 = seq(0,1,length = n.tr^(1/5)))
#' fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
#' which_on(sIn, fIn, xm@log.success@args[[1]]) # only the indices extracted by which_on
#'
#' @export
which_on <- function (sIn = NULL, fIn = NULL, args) {
  # initalize controllers and outputs of the function
  s.on <- f.on <- FALSE
  s.inds <- f.inds <- NULL

  # determine if there are scalars and functional inputs active
  key <- args@string
  if (grepl("sIn", key)) {
    s.on <- TRUE
  }
  if (grepl("fIn", key)) {
    f.on <- TRUE
  }

  # get sIn and fIn expressions when necessary
  if (all(s.on, f.on)) { # scalar and functional inputs on
    xs <- text_bt(key, "sIn = ", ", fIn")
    xf <- text_bt(key, "fIn = ", ", sOut")
  } else if (s.on) { # only scalar inputs on
    xs <- text_bt(key, "sIn = ", ", sOut")
    xf <- fIn.on <- NULL
  } else if (f.on) { # only functional inputs on
    xs <- sIn.on <- NULL
    xf <- text_bt(key, "fIn = ", ", sOut")
  } else return(NULL)

  # prune the scalar inputs based on vector of indices
  if (!is.null(xs)) {
    # not all the variables are kept on
    if (grepl("\\d", xs)) {
      # separated indices of variables in the form c(1,3,4)
      if (grepl("\\(", xs)) {
        s.inds <- as.numeric(unlist(regmatches(xs, gregexpr("[[:digit:]]+", xs))))
      }
      # consecutive indices of variables in the form 2:5
      else if (grepl(":", xs)) {
        v <- as.numeric(unlist(regmatches(xs, gregexpr("[[:digit:]]+", xs))))
        s.inds <- v[1]:v[2]
      }
      # only one index in the form 4
      else {
        s.inds <- as.numeric(unlist(regmatches(xs, gregexpr("[[:digit:]]+", xs))))
      }
    }
    # all the scalar variables are kept on
    else {
      s.inds <- 1:ncol(sIn)
    }
  }

  # prune the functional inputs based on vector of indices
  if (!is.null(xf)) {
    # not all the variables are kept on
    if (grepl("\\d", xf)) {
      # separated indices of variables in the form c(1,3,4)
      if (grepl("\\(", xf)) {
        f.inds <- as.numeric(unlist(regmatches(xf, gregexpr("[[:digit:]]+", xf))))
      }
      # consecutive indices of variables in the form 2:5
      else if (grepl(":", xf)) {
        v <- as.numeric(unlist(regmatches(xf, gregexpr("[[:digit:]]+", xf))))
        f.inds <- v[1]:v[2]
      }
      # only one index in the form 4
      else {
        f.inds <- as.numeric(unlist(regmatches(xf, gregexpr("[[:digit:]]+", xf))))
      }
    }
    # all the variables are kept on
    else {
      f.inds <- 1:length(fIn)
    }
  }

  return(list(s.inds = s.inds, f.inds = f.inds))
}
# ==========================================================================================================



# ==========================================================================================================
# Function to prune the inputs data structures according to some structural parameters delivered by the factory
# ==========================================================================================================
#' @title Extraction of active inputs in a given model structure
#' @description The \link[funGp]{fgpm_factory} function returns an object of class \code{"\linkS4class{Xfgpm}"}
#'   with the function call of all the evaluated models stored in the \code{@log.success@args} and
#'   \code{@log.crashes@args} slots. The \code{get_active_in} function interprets the arguments linked to any
#'   structural configuration and returns a list with two elements: (i) a \code{matrix} of scalar input
#'   variables kept active; and (ii) a \code{list} of functional input variables kept active.
#'
#' @param sIn An optional matrix of scalar input coordinates with all the orignal scalar input variables.
#' @param fIn An optional list of functional input coordinates with all the original functional input
#'   variables.
#' @param args An object of class \code{"\linkS4class{modelCall}"}, which specifies the model structure for
#'   which the active inputs should be extracted.
#'
#' @return An object of class \code{"list"}, containing the following information extracted from the
#'   \emph{args} parameter: (i) a \code{matrix} of scalar input variables kept active; and (ii) a \code{list}
#'   of functional input variables kept active.
#'
#' @author José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer
#'
#' @references Betancourt, J., Bachoc, F., Klein, T., Idier, D., Rohmer, J., and Deville, Y. (2024),
#' "funGp: An R Package for Gaussian Process Regression with Scalar and Functional Inputs".
#' \emph{Journal of Statistical Software}, \strong{109}, 5, 1--51.
#'  (\doi{https://doi.org/10.18637/jss.v109.i05})
#'
#' @references Betancourt, J., Bachoc, F., and Klein, T. (2020),
#' R Package Manual: "Gaussian Process Regression for Scalar and Functional Inputs with funGp - The in-depth tour".
#' \emph{RISCOPE project}.
#' \href{https://hal.science/hal-02536624}{[HAL]}
#'
#' @seealso \strong{*} \link[funGp]{which_on} for details on how to obtain only the indices of the active inputs.
#' @seealso \strong{*} \linkS4class{modelCall} for details on the \emph{args} argument.
#' @seealso \strong{*} \link[funGp]{fgpm_factory} for funGp heuristic model selection.
#' @seealso \strong{*} \linkS4class{Xfgpm} for details on object delivered by \link[funGp]{fgpm_factory}.
#'
#' @examples
#' # Use precalculated Xfgpm object named xm
#' # indices of active inputs in the best model
#' xm@log.success@args[[1]] # the full fgpm call
#' set.seed(100)
#' n.tr <- 32
#' sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),
#' x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
#' x5 = seq(0,1,length = n.tr^(1/5)))
#' fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
#' which_on(sIn, fIn, xm@log.success@args[[1]]) # only the indices extracted by which_on
#'
#' # data structures of active inputs
#' active <- get_active_in(sIn, fIn, xm@log.success@args[[1]])
#' active$sIn.on # scalar data structures
#' active$fIn.on # functional data structures
#' # identifying selected model and corresponding fgpm arguments
#' opt.model <- xm@model
#' opt.args <- xm@log.success@args[[1]]
#'
#' # generating new input data for prediction
#' n.pr <- 243
#' sIn.pr <- expand.grid(x1 = seq(0,1,length = n.pr^(1/5)), x2 = seq(0,1,length = n.pr^(1/5)),
#'                       x3 = seq(0,1,length = n.pr^(1/5)), x4 = seq(0,1,length = n.pr^(1/5)),
#'                       x5 = seq(0,1,length = n.pr^(1/5)))
#' fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), f2 = matrix(runif(n.pr*22), ncol = 22))
#'
#' # pruning data structures for prediction to keep only active inputs!!
#' active <- get_active_in(sIn.pr, fIn.pr, opt.args)
#'
#' # making predictions
#' preds <- predict(opt.model, sIn.pr = active$sIn.on, fIn.pr = active$fIn.on)
#'
#' # plotting predictions
#' plot(preds)
#'
#'
#' # preparing new data for simulation based on inputs kept active____________________________
#' opt.model <- xm@model
#' opt.args <- xm@log.success@args[[1]]
#'
#' # generating new input data for simulation
#' n.sm <- 243
#' sIn.sm <- expand.grid(x1 = seq(0,1,length = n.pr^(1/5)), x2 = seq(0,1,length = n.pr^(1/5)),
#'                       x3 = seq(0,1,length = n.pr^(1/5)), x4 = seq(0,1,length = n.pr^(1/5)),
#'                       x5 = seq(0,1,length = n.pr^(1/5)))
#' fIn.sm <- list(f1 = matrix(runif(n.sm*10), ncol = 10), f2 = matrix(runif(n.sm*22), ncol = 22))
#'
#' # pruning data structures for simulation to keep only active inputs!!
#' active <- get_active_in(sIn.sm, fIn.sm, opt.args)
#'
#' # making light simulations
#' sims_l <- simulate(opt.model, nsim = 10, sIn.sm = active$sIn.on, fIn.sm = active$fIn.on)
#'
#' # plotting light simulations
#' plot(sims_l)
#'
#' \dontrun{
#' # rebuilding of 3 best models using new data_______________________________________________
#' # NOTE: this example is of higher complexity than the previous ones. We recomend you run
#' #       the previous examples and understand the @log.success and @log.crashes slots in
#' #       the Xfgpm object delivered by fgpm_factory.
#' #
#' #       In the second example above we showed how to use get_active_in to prune the input
#' #       data structures for prediction based on the fgpm arguments of the best model found
#' #       by fgpm_factory. In this new example we generalize that concept by: (i) rebuilding
#' #       the 3 best models found by fgpm_factory using new data, (ii) pruning the input
#' #       data structures used for prediction with each of the models, and (iii) plotting
#' #       the predictions made by the three models. The key ingredient here is that the
#' #       three best models might have different scalar and functional inputs active. The
#' #       get_active_in function will allow to process the data structures in order to
#' #       extract only the scalar inputs required to re-build the model and then to make
#' #       predictions with each model. Check also the funGp manual for further details
#' #
#' #       funGp manual: https://doi.org/10.18637/jss.v109.i05
#'
#'
#' # <<<<<<< PART 1: calling fgpm_factory to perform the structural optimization >>>>>>>
#' #         -------------------------------------------------------------------
#' # this part is precalculated and loaded via data("precalculated_Xfgpm_objects")
#' summary(xm)
#'
#' # <<<<<<< PART 2: re-building the three best models found by fgpm_factory >>>>>>>
#' #         ---------------------------------------------------------------
#' # recovering the fgpm arguments of the three best models
#' argStack <- xm@log.success@args[1:3]
#'
#' # new data arrived, now we have 243 observations
#' n.nw <- 243 # more points!
#' sIn.nw <- expand.grid(x1 = seq(0,1,length = n.nw^(1/5)), x2 = seq(0,1,length = n.nw^(1/5)),
#'                       x3 = seq(0,1,length = n.nw^(1/5)), x4 = seq(0,1,length = n.nw^(1/5)),
#'                       x5 = seq(0,1,length = n.nw^(1/5)))
#' fIn.nw <- list(f1 = matrix(runif(n.nw*10), ncol = 10), f2 = matrix(runif(n.nw*22), ncol = 22))
#' sOut.nw <- fgp_BB7(sIn.nw, fIn.nw, n.nw)
#'
#' # the second best model
#' modelDef(xm,2)
#' # re-building the three best models based on the new data (compact code with all 3 calls)
#' newEnv <- list(sIn = sIn.nw, fIn = fIn.nw, sOut = sOut.nw)
#' modStack <- lapply(1:3, function(i) eval(parse(text =  modelDef(xm,i)), env = newEnv))
#'
#'
#' # <<<<<<< PART 3: making predictions from the three best models found by fgpm_factory >>>>>>>
#' #         ---------------------------------------------------------------------------
#' # generating input data for prediction
#' n.pr <- 32
#' sIn.pr <- expand.grid(x1 = seq(0,1,length = n.pr^(1/5)), x2 = seq(0,1,length = n.pr^(1/5)),
#'                       x3 = seq(0,1,length = n.pr^(1/5)), x4 = seq(0,1,length = n.pr^(1/5)),
#'                       x5 = seq(0,1,length = n.pr^(1/5)))
#' fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))
#'
#' # making predictions based on the three best models (compact code with all 3 calls)
#' preds <- do.call(cbind, Map(function(model, args) {
#'   active <- get_active_in(sIn.pr, fIn.pr, args)
#'   predict(model, sIn.pr = active$sIn.on, fIn.pr = active$fIn.on)$mean
#' }, modStack, argStack))
#'
#'
#' # <<<<<<< PART 4: plotting predictions from the three best models found by fgpm_factory >>>>>>>
#' #         -----------------------------------------------------------------------------
#' # plotting predictions made by the three models
#' plot(1, xlim = c(1,nrow(preds)), ylim = range(preds), xaxt = "n",
#'      xlab = "Prediction point index", ylab = "Output",
#'      main = "Predictions with best 3 structural configurations")
#' axis(1, 1:nrow(preds))
#' for (i in seq_len(n.pr)) {lines(rep(i,2), range(preds[i,1:3]), col = "grey35", lty = 3)}
#' points(preds[,1], pch = 21, bg = "black")
#' points(preds[,2], pch = 23, bg = "red")
#' points(preds[,3], pch = 24, bg = "green")
#' legend("bottomleft", legend = c("Model 1", "Model 2", "Model 3"),
#'        pch = c(21, 23, 24), pt.bg = c("black", "red", "green"), inset = c(.02,.08))
#' }
#'
#' @export
get_active_in <- function (sIn = NULL, fIn = NULL, args) {
  # get indices of active inputs
  active <- which_on(sIn, fIn, args)

  # original inputs: hybrid
  if (all(!is.null(sIn), !is.null(fIn))) {
    return(list(sIn.on = sIn[,active$s.inds,drop=FALSE], fIn.on = fIn[active$f.inds]))
  }

  # original inputs: functional
  else if (!is.null(fIn)) {
    return(list(sIn.on = NULL, fIn.on = fIn[active$f.inds]))
  }

  # original inputs: scalar
  else if (!is.null(fIn)) {
    return(list(sIn.on = sIn[,active$s.inds,drop=FALSE], fIn.on = NULL))
  }
}
# ==========================================================================================================

Try the funGp package in your browser

Any scripts or data that you put into this service are public.

funGp documentation built on May 29, 2024, 8 a.m.