seBeta | R Documentation |
Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients
seBeta(
X = NULL,
y = NULL,
cov.x = NULL,
cov.xy = NULL,
var.y = NULL,
Nobs = NULL,
alpha = 0.05,
estimator = "ADF",
digits = 3
)
X |
Matrix of predictor scores. |
y |
Vector of criterion scores. |
cov.x |
Covariance or correlation matrix of predictors. |
cov.xy |
Vector of covariances or correlations between predictors and criterion. |
var.y |
Criterion variance. |
Nobs |
Number of observations. |
alpha |
Desired Type I error rate; default = .05. |
estimator |
'ADF' or 'Normal' confidence intervals - requires raw X and raw y; default = 'ADF'. |
digits |
Number of significant digits to print; default = 3. |
cov.Beta |
Normal theory or ADF covariance matrix of standardized regression coefficients. |
se.Beta |
standard errors for standardized regression coefficients. |
alpha |
desired Type-I error rate. |
CI.Beta |
Normal theory or ADF (1-alpha)% confidence intervals for standardized regression coefficients. |
estimator |
estimator = "ADF" or "Normal". |
Jeff Jones and Niels Waller
Jones, J. A, and Waller, N. G. (2015). The Normal-Theory and Asymptotic Distribution-Free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80, 365-378.
library(MASS)
set.seed(123)
R <- matrix(.5, 3, 3)
diag(R) <- 1
X <- mvrnorm(n = 200, mu = rep(0, 3), Sigma = R, empirical = TRUE)
Beta <- c(.2, .3, .4)
y <- X%*% Beta + .64 * scale(rnorm(200))
seBeta(X, y, Nobs = 200, alpha = .05, estimator = 'ADF')
# 95% CIs for Standardized Regression Coefficients:
#
# lbound estimate ubound
# beta_1 0.104 0.223 0.341
# beta_2 0.245 0.359 0.473
# beta_3 0.245 0.360 0.476
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.