seBetaCor | R Documentation |
Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients from Correlations
seBetaCor(R, rxy, Nobs, alpha = 0.05, digits = 3, covmat = "normal")
R |
A p x p predictor correlation matrix. |
rxy |
A p x 1 vector of predictor-criterion correlations |
Nobs |
Number of observations. |
alpha |
Desired Type I error rate; default = .05. |
digits |
Number of significant digits to print; default = 3. |
covmat |
String = 'normal' (the default) or a (p+1)p/2 x (p+1)p/2 covariance matrix of correlations. The default option computes an asymptotic covariance matrix under the assumption of multivariate normal data. Users can supply a covariance matrix under asymptotic distribution free (ADF) or elliptical distributions when available. |
cov.Beta |
Covariance matrix of standardized regression coefficients. |
se.Beta |
Vector of standard errors for the standardized regression coefficients. |
alpha |
Type-I error rate. |
CI.Beta |
(1-alpha)% confidence intervals for standardized regression coefficients. |
Jeff Jones and Niels Waller
Jones, J. A, and Waller, N. G. (2013). The Normal-Theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior.Technical Report (052913)[TR052913]
Nel, D.A.G. (1985). A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients. Linear Algebra and its Applications, 67, 137-145.
Yuan, K. and Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika, 76(4), 670–690.
R <- matrix(c(1.0000, 0.3511, 0.3661,
0.3511, 1.0000, 0.4359,
0.3661, 0.4359, 1.0000), 3, 3)
rxy <- c(0.5820, 0.6997, 0.7621)
Nobs <- 46
out <- seBetaCor(R = R, rxy = rxy, Nobs = Nobs)
# 95% CIs for Standardized Regression Coefficients:
#
# lbound estimate ubound
# beta_1 0.107 0.263 0.419
# beta_2 0.231 0.391 0.552
# beta_3 0.337 0.495 0.653
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.