View source: R/summary.monte.R
summary.monte | R Documentation |
summary method for class “monte"
## S3 method for class 'monte'
summary(
object,
digits = 3,
compute.validities = FALSE,
Total.stats = TRUE,
...
)
object |
An object of class |
digits |
Number of digits to print. Default = 3. |
compute.validities |
Logical: If TRUE then the program will calculate the indicator validities (eta^2) for the generated data. |
Total.stats |
Logical: If TRUE then the program will return the following statistics for the total sample: (1) indicator correlation matrix, (2) indicator skewness, (3) indicator kurtosis. |
... |
Optional arguments. |
Various descriptive statistics will be computed within groups including"
Number of objects within each group.
Group centroids.
Within group variances.
Expected within group correlations.
Observed within group correlations.
Expected within group indicator skewness values.
Observed within group indicator skewness values.
Expected within group indicator kurtosis values.
Observed within group indicator kurtosis values.
Observed indicator validities.
Total sample correlation matrix.
Total sample indicator skewness.
Total sample indicator kurtosis.
## set up a 'monte' run for the Fisher iris data
sk.lst <- list(c(0.120, 0.041, 0.106, 1.254), #
c(0.105, -0.363, -0.607, -0.031),
c(0.118, 0.366, 0.549, -0.129) )
kt.lst <- list(c(-0.253, 0.955, 1.022, 1.719),
c(-0.533,-0.366, 0.048, -0.410),
c( 0.033, 0.706, -0.154, -0.602))
cormat <- lapply(split(iris[,1:4],iris[,5]), cor)
my.iris <- monte(seed = 123, nvar = 4, nclus = 3, cor.list = cormat,
clus.size = c(50, 50, 50),
eta2 = c(0.619, 0.401, 0.941, 0.929),
random.cor = FALSE,
skew.list = sk.lst, kurt.list = kt.lst,
secor = .3,
compactness = c(1, 1, 1),
sortMeans = TRUE)
summary(my.iris)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.