fusedest_logit: The block splitting algorithm for logistic regression...

Description Value Examples

View source: R/fusedest_source_code_logistic_reg.R

Description

A function for computing logistic regression estimation with the fused group lasso penalty function

Value

Return a list of output, e.g. the solution, runtime and iteration error, for the block splitting algorithm. For more details, please see the example below.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
library(fusedest)
library(igraph)

######### Functions for data generation ###########


generating_binary_data <- function(beta.true, N, m){


  #### internal functions #######

  logit.prob <- function(X,beta){
    p <- dim(X)[2]

    if(is.null(p)==TRUE){
      eta <- X*beta
    }
    if(is.null(p)==FALSE){
      eta <- X%*%beta
    }
    prob.a <- exp(eta)/(1+exp(eta))
    return(prob.a)
  }

  ################################

  p <- dim(beta.true)[2]
  M <- dim(beta.true)[1]

  label.list <- sample(c(1:M), m, replace = TRUE) ##### Label for data centers
  n.list <- rpois(m, N)
  n.list_pred <- n.list

  ind.strt <- c(1, cumsum(n.list[1:(m-1)])+1)
  ind.end <- cumsum(n.list)

  X <- cbind(rep(1, sum(n.list)), matrix(sample(c(0,1),
  sum(n.list)*(p-1), replace = TRUE, prob = c(0.5, 0.5)),
  nrow = sum(n.list), ncol = p-1))

  X_pred <- cbind(rep(1, sum(n.list)), matrix(sample(c(0,1),
  sum(n.list)*(p-1), replace = TRUE, prob = c(0.5, 0.5)),
  nrow = sum(n.list), ncol = p-1))


  label.dc <- rep(c(1:m), n.list)
  label.dc_pred <- rep(c(1:m), n.list_pred)

  y <- as.numeric(unlist(sapply(c(1:m),
                                function(i){
                                  rbinom(n.list[i], 1,
                                  logit.prob(X[ind.strt[i]:ind.end[i],],
                                  as.numeric(beta.true[label.list[i],])))
                                })))

  y_pred <- as.numeric(unlist(sapply(c(1:m),
                                function(i){
                                  rbinom(n.list[i], 1,
                                  logit.prob(X_pred[ind.strt[i]:ind.end[i],],
                                  as.numeric(beta.true[label.list[i],])))
                                })))

  label.true <- rep(label.list, n.list)
  label.true_pred <- rep(label.list, n.list_pred)

  results <- list(X, X_pred, y, y_pred, n.list, n.list_pred,
  label.dc, label.dc_pred, label.true, label.true_pred)

  names(results) <- c("X", "X_pred", "y", "y_pred", "n.list", "n.list_pred",
                      "label.dc", "label.dc_pred", "label.true", "label.true_pred")
  return(results)
}

generatingEdgelistID <- function(m){

  c1 <- rep(0,m*(m-1)/2)
  c2 <- rep(0,m*(m-1)/2)
  l <- 0
  for(i in 1:(m-1)){
    c1[c((l+1):(l+m-i))] <- rep(i,m-i)
    c2[c((l+1):(l+m-i))] <- c((i+1):m)
    l <- l + m-i
  }

  return(cbind(c1,c2))
}


Blockl2Norm <- function(beta_i, beta_j, p, q_H) {
    .Call('_fusedest_Blockl2Norm', PACKAGE = 'fusedest',
    beta_i, beta_j, p, q_H)
}


IRLSLogisticReg <- function(X, y, a, b, beta_ini, max_iter, tol_err) {
    .Call('_fusedest_IRLSLogisticReg', PACKAGE = 'fusedest',
    X, y, a, b, beta_ini, max_iter, tol_err)
}



########################################

beta.true <- t(matrix(
  c(c(1,1, rep(c(-0.1,0.1), 4)),
    c(-0.1,0.1, 1,1, rep(c(0.2,-0.2), 3)),
    c(rep(c(-0.1,0.1),2),c(1,1), rep(c(-0.1,0.1),2)),
    c(rep(c(-0.1,0.1),3),c(1,1),c(-0.1,0.1)),
    c(rep(c(-0.1,0.1),4),1, 1)), nrow = 10, ncol = 5
))

###### Setting parameters ##############

no_id <- 1
no.cores <- 1
N_list <-  100 #seq(100, 2000, length = 20)
id_list <- c(1:no_id)
m.total <- 10
p <- dim(beta.true)[2]
no_lambda <- 1

####### Number of data centers ########


result.AIC <- matrix(0, nrow = length(N_list)*no_id, ncol = 13)
result.BIC <- matrix(0, nrow = length(N_list)*no_id, ncol = 13)

l <- 1

for(u in 1:length(N_list)){

  N <- N_list[u]

  for(v in 1:no_id){


    id <- id_list[v]

######## Generating data #######################################

    mydata <- generating_binary_data(beta.true, N, m.total)

    y <- mydata$y
    X <- mydata$X
    label_dc <- mydata$label.dc
    label_true <- mydata$label.true
    n.list <- mydata$n.list

    y_pred <- mydata$y_pred
    X_pred <- mydata$X_pred
    label_dc_pred <- mydata$label.dc_pred
    label.true_pred <- mydata$label.true_pred
    n.list_pred <- mydata$n.list_pred

################## Setting parameters #########################

    set.seed(2, kind = NULL, normal.kind = NULL)

    rho <- 1
    H <- generatingEdgelistID(m = m.total)
    q_H <- sum(degree(graph_from_edgelist(H, directed = FALSE)))/2

    p <- dim(X)[2]
    n_dc <- as.numeric(unlist(table(label_dc)))
    m.total <- length(n_dc)
    label_true_dc <- tapply(label_true, label_dc, mean)
    beta_true_dc <- beta.true[label_true_dc,]
    n <- sum(n_dc)
    ind_strt <- c(1, cumsum(n_dc[1:(m.total-1)])+1)
    ind_end <- cumsum(n_dc)

################## Computing initial values ###################

    beta_ini <- t(parallel::mcmapply(function(i){

      ind_i <- c(ind_strt[i]:ind_end[i])
      IRLSLogisticReg(X = X[ind_i,], y = y[ind_i], a = 0, b = rep(0, p),
      beta_ini = rep(0, p), max_iter = 1000, tol_err = 10^(-8))$beta},
      c(1:m.total), mc.cores = no.cores))

    beta_i_list <- as.vector(t(beta_ini[H[,1],]))
    beta_j_list <- as.vector(t(beta_ini[H[,2],]))

    l2_norm_dist <- Blockl2Norm(beta_i = beta_i_list, beta_j = beta_j_list, p = p, q_H = q_H)

    max_lambda <- max(l2_norm_dist)
    #lambda_list <- seq(max_lambda, 0.01*max_lambda, length = no_lambda)
    lambda_list <- rev(as.numeric(quantile(l2_norm_dist,
    probs = seq(0.001, 1, length = no_lambda))))
    max_iter <- 10
    tol_err <- 5*10^(-3)

###### Run simulation #########################################

    strt.time <- Sys.time()

    result.uv <- fusedest_logit(X = X, y = y, label_dc = label_dc, H = H,
                                rho = rho, no_lambda = no_lambda, lambda_list = lambda_list,
                                beta_ini = beta_ini, max_iter = max_iter,
                                tol_err = tol_err, no.cores = no.cores)

    beta_list <- result.uv$beta_list
    alpha_list <- result.uv$alpha_list

  end.time <- Sys.time()

  print(difftime(end.time, strt.time, units = "sec"))
    }
}

fusedest documentation built on Oct. 30, 2019, 9:48 a.m.