View source: R/fusedest_source_code_linear_reg.R
A function for computing linear regression estimation with the fused group lasso penalty function
Return a list of output, e.g. the solution, runtime and iteration error, for the block splitting algorithm. For more details, please see the example below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | library(fusedest)
library(igraph)
####### Functions for data generation #########
generating_normal_data <- function(beta.true, N, m, sigma2.y){
p <- dim(beta.true)[2]
M <- dim(beta.true)[1]
label.list <- sample(c(1:M), m, replace = TRUE)
n.list <- rpois(m, N)
X <- matrix(rnorm(sum(n.list)*p, 0, 1), nrow = sum(n.list), ncol = p)
ind.strt <- c(1, cumsum(n.list[1:(m-1)])+1)
ind.end <- cumsum(n.list)
label.dc <- rep(c(1:m), n.list)
y <- as.numeric(unlist(sapply(c(1:m),
function(i){
X[ind.strt[i]:ind.end[i],]%*%as.numeric(beta.true[label.list[i],]) +
rnorm(n.list[i], 0, sqrt(sigma2.y))
})))
label.true <- rep(label.list, n.list)
results <- list(X, y, n.list, label.dc, label.true)
names(results) <- c("X", "y", "n.list", "label.dc", "label.true")
return(results)
}
generatingEdgelistID03 <- function(m, deg){
c1 <- NULL
c2 <- NULL
if(deg < m-deg){
c1 <- rep(0, (m-deg)*deg)
c2 <- rep(0, (m-deg)*deg)
for(i in 1:(m-deg)){
ind.i <- c(((i-1)*deg+1):(i*deg))
c1[ind.i] <- rep(i, deg)
c2[ind.i] <- c((i+1):(i+deg))
}
if(deg > 1){
c3 <- rep(0, deg*(deg-1)/2)
c4 <- rep(0, deg*(deg-1)/2)
l <- 0
for(i in (m-deg+1):(m-1)){
c3[c((l+1):(l+m-i))] <- rep(i, m-i)
c4[c((l+1):(l+m-i))] <- c((i+1):m)
l <- l + (m-i)
}
}
}
return(cbind(c(c1,c3),c(c2,c4)))
}
RcppInvGram <- function(X, w, lambda) {
.Call('_fusedest_RcppInvGram', PACKAGE = 'fusedest', X, w, lambda)
}
RcppXtwy <- function(X, y, w) {
.Call('_fusedest_RcppXtwy', PACKAGE = 'fusedest', X, y, w)
}
RcppWolsSolver03 <- function(invXtwX, Xtwy, b) {
.Call('_fusedest_RcppWolsSolver03', PACKAGE = 'fusedest', invXtwX, Xtwy, b)
}
############ Setting true parameters ##########
p.star <- 10
beta.true <- t(matrix(
c(rep(c(-2,2), p.star),
rep(c(2,-2), p.star),
c(rep(2, p.star),rep(-2,5)),
c(rep(-2,p.star),rep(2,5)),
rep(c(-1,3), p.star)), nrow = p.star, ncol = 5
))
N <- 100
m <- 10
p <- dim(beta.true)[2]
########## Generating data ###################
strt <- Sys.time()
mydata <- generating_normal_data(beta.true, N, m, sigma2.y = 1)
end <- Sys.time()
difftime(end, strt, units="sec")
y <- mydata$y
X <- mydata$X
label_dc <- mydata$label.dc
label.true <- mydata$label.true
n.list <- mydata$n.list
sum(n.list)
length(n.list)
length(y)
dim(X)
min(n.list)
max(n.list)
sum(n.list)
###### Run simulation #########################################
no.cores <- 1
m.total <- 10
m.list <- 10
ind.strt <- c(1, cumsum(n.list[1:(m.total-1)])+1)
ind.end <- cumsum(n.list)
no_lambda <- 1
lambda_list <- 0.01
u <- 1
H <- generatingEdgelistID03(m = m.list[u], deg = 2)
q_H <- sum(degree(graph_from_edgelist(H, directed = FALSE)))/2
max_iter <- 10
tol_err <- 10^(-100)
rho <- 1
set.seed(2, kind = NULL, normal.kind = NULL)
##### Computing initial values ####################################
beta_ini <- t(parallel::mcmapply(function(i){
W <- rep(1, n.list[i])
inv_XTX_i <- RcppInvGram(X[ind.strt[i]:ind.end[i],], W, 0)
XTy_i <- RcppXtwy(X[ind.strt[i]:ind.end[i], ],y[ind.strt[i]:ind.end[i]],W)
RcppWolsSolver03(inv_XTX_i, XTy_i, rep(0, p))
}, c(1:m.total), mc.cores = no.cores))
beta_ini_norm <- sqrt(apply(beta_ini^2, 1, sum))
####### Running the proposed method ##########################
result.uv <- fusedest_normal(X = X[ind.strt[1]:ind.end[m.list[u]],],
y = y[ind.strt[1]:ind.end[m.list[u]]],
label_dc = label_dc[ind.strt[1]:ind.end[m.list[u]]], H = H,
rho = rho, no_lambda = no_lambda, lambda_list = lambda_list,
beta_ini = beta_ini[1:m.list[u],], max_iter = max_iter,
tol_err = tol_err, no.cores = no.cores)
result.BS <- result.uv$alg.matrix
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.