Nothing
## ###############################################################
##
## #' @title Evidence objects
## #' @description Functions for defining and manipulating evidence.
## #' @author Søren Højsgaard, \email{sorenh@@math.aau.dk}
## #' @name evidence_object
##
## ###############################################################
## '
## ' @aliases subset.grain_evidence print.grain_evidence
## '
## ' @details Evidence is specified as a list. Internally, evidence is
## ' represented as a grain evidence object which is a list with 4 elements.
## '
## ' @examples
## '
## ' ## Define the universe
## ' yn <- c("yes", "no")
## ' uni <- list(asia = yn, tub = yn, smoke = yn, lung = yn,
## ' bronc = yn, either = yn, xray = yn, dysp = yn)
## '
## ' e1 <- list(dysp="no", xray="no")
## ' eo1 <- grain_evidence_new(e1, levels=uni)
## ' eo1 |> as.data.frame()
## '
## ' e2 <- list(dysp="no", xray=c(0, 1))
## ' eo2 <- grain_evidence_new(e2, levels=uni)
## ' eo2 |> as.data.frame()
## '
## ' # Above e1 and e2 specifies the same evidence but information about
## ' # whether the state has been set definite or as a weight is
## ' # maintained.
## '
## ' e3 <- list(dysp="yes", asia="yes")
## ' eo3 <- grain_evidence_new(e3, uni)
## ' eo3 |> as.data.frame()
## '
## ' # If evidence 'e1' is already set in the network and new evidence
## ' # 'e3' emerges, then evidence in the network must be updated. But
## ' # there is a conflict in that dysp="yes" in 'e1' and
## ' # dysp="no" in 'e3'. The (arbitrary) convention is that
## ' # existing evidence overrides new evidence so that the only new
## ' # evidence in 'e3' is really asia="yes".
## '
## ' # To subtract existing evidence from new evidence we can do:
## ' zz <- grain_evidence_setdiff(eo3, eo1)
## '
## ' # Likewise the 'union' is
## ' zz <- grain_evidence_union(eo3, eo1)
## '
## ' @export
## ' @rdname evidence_object
## ' @param evi_list A named list with evidence; see 'examples' below.
## ' @param levels A named list with the levels of all variables.
grain_evidence_new <- function(evi_list=NULL, levels) {
if (inherits(evi_list, "grain_evidence")) {
return(evi_list)
}
if (length(evi_list) == 0){
out <- list(nodes = character(0),
is_hard = logical(0),
hard_state = character(0),
evi_weight = list() )
} else {
## First remove all evidence specified as NA
not.na <- !unlist(lapply(lapply(evi_list,is.na), any), use.names=FALSE)
if (length( not.na ) > 0)
evi_list <- evi_list[ not.na ]
evi_weight <- vector("list", length(evi_list))
is_hard <- rep.int(TRUE, length(evi_list))
hard_state <- rep.int(NA, length(evi_list))
for (i in seq_along(evi_list)){
ev <- evi_list[i]
v <- ev[[1]]
if( is.array(v)){
n <- names(dimnames(v))
is_hard[i] <- FALSE
evi_weight[[i]] <- v
next
}
if (is.character(v)){
n <- names(evi_list)[i]
hard_state[i] <- v
evi_weight[[i]] <- hard_state_to_array(n, v, levels[[n]])
next
}
if (is.numeric(v)){
n <- names(evi_list)[i]
is_hard[i] <- FALSE
evi_weight[[i]] <- soft_state_to_array(n, v, levels[[n]])
}
}
## If evidence is zero on all states or negative on some (or all) states then it is invalid
keep <- unlist(lapply(evi_weight, function(e){ sum(e) !=0 && all(e>=0) }), use.names=FALSE)
nodes <- unique.default(unlist(lapply(evi_weight, .namesDimnames)),
use.names=FALSE )
out <- list(
nodes = nodes[keep],
is_hard = is_hard[keep],
hard_state = hard_state[keep],
evi_weight = evi_weight[keep])
}
class(out) <- c("grain_evidence", "list")
out <- grain_evidence2dataframe(out)
class(out) <- c("grain_evidence", "data.frame")
out
}
is.null_evi <- function(object) {
if (missing(object)) TRUE
else if (length(object) == 0) TRUE
else if (inherits(object, "grain_evidence") && length(grain_evidence_names(object)) == 0) TRUE
else FALSE
}
grain_evidence_names <- function(x) x$nodes
## ' @name evidence_object
## ' @param row.names Not used.
## ' @param optional Not used.
## ' @param x An evidence object.
## ' @param ... Not used.
## ' @export
grain_evidence2dataframe <- function(x) {
x <<-x
mm <- lapply(x, function(z) as.data.frame(I(z)))
mm <- as.data.frame(mm)
names(mm) <- names(x)
mm
}
grain_evidence2dataframe <-
function (x, row.names = NULL, optional = FALSE, ...) {
is.atom <- sapply(x, is.atomic)
atom <- x[is.atom]
n.atom <- length(atom)
out <- as.data.frame(atom)
notatom <- x[!is.atom]
n <- names(notatom)
for (i in 1:length(notatom)){
out[i+n.atom] <- notatom[i]
}
out
}
grain_evidence_setdiff <- function(ev1, ev2) {
if (length(ev1) == 0) ev1 <- grain_evidence_new( ev1 )
if (length(ev2) == 0) ev2 <- grain_evidence_new( ev2 )
nn <- setdiff( grain_evidence_names(ev1), grain_evidence_names(ev2) )
out <- grain_evidence_subset(ev1, select=nn)
class(out) <- c("grain_evidence", "list")
out <- grain_evidence2dataframe(out)
class(out) <- c("grain_evidence", "data.frame")
out
}
grain_evidence_union <- function(ev1, ev2) {
if (length(ev1)==0) ev1 <- grain_evidence_new( ev1 )
if (length(ev2)==0) ev2 <- grain_evidence_new( ev2 )
ev <- grain_evidence_setdiff( ev1, ev2 )
out <- mapply(function(l1, l2){c(l1,l2)},
ev, ev2, SIMPLIFY=FALSE, USE.NAMES=TRUE)
class(out) <- c("grain_evidence", "list")
out <- grain_evidence2dataframe(out)
class(out) <- c("grain_evidence", "data.frame")
out
}
grain_evidence_subset <- function(x, subset, select, drop = FALSE, ...){
if (missing(select)) x
else if (length(select)==0) grain_evidence_new(list())
else {
nl <- as.list(1L:length(grain_evidence_names(x)))
names(nl) <- grain_evidence_names(x)
vars <- eval(substitute(select), nl, parent.frame())
if (is.character(vars))
vars <- match(vars, grain_evidence_names(x))
if (any(is.na(vars)))
stop("'vars' contain NA")
if (max(vars) > length(grain_evidence_names(x)))
stop("'vars' too large")
out <- lapply(x, "[", vars)
class(out) <- class(x)
out
}
}
## ###############################################
##
## UTILITIES
##
## ###############################################
## Bruges i grain_evidence_new
hard_state_to_array <- function(n, v, lev){
#str(list(n,v,lev))
tab <- fast_array(n, list(lev), rep.int(0, length(lev)))
tab[ match( v, lev )] <- 1
tab
}
## Bruges i grain_evidence_new
soft_state_to_array <- function(n, v, lev){
#str(list(n,v,lev))
fast_array(n, list(lev), v)
}
## Bruges af ovenstående fns
fast_array <- function(varNames, levels, values=1){
#str(list(varNames, levels, values))
dn <- if(is.list(levels)) levels else list(levels)
names(dn) <- varNames
array(values, dimnames=dn)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.