Nothing
## FIXME: citest_array: Clean up code; use modern tabXXX functions; add parametric bootstrap
###################################################################################
#'
#' @title Test for conditional independence in a contingency table
#' @description Test for conditional independence in a contingency table
#' represented as an array.
#' @name citest-array
#'
###################################################################################
#'
#' @param x An array of counts with named dimnames.
#' @param set A specification of the test to be made. The tests are of the form u
#' and v are independent condionally on S where u and v are variables and S
#' is a set of variables. See 'details' for details about specification of
#' \code{set}.
#' @param statistic Possible choices of the test statistic are \code{"dev"} for
#' deviance and \code{"X2"} for Pearsons X2 statistic.
#' @param method Method of evaluating the test statistic. Possible choices are
#' \code{"chisq"}, \code{"mc"} (for Monte Carlo) and \code{"smc"} for
#' sequential Monte Carlo.
#'
#' @param adjust.df Logical. Should degrees of freedom be adjusted for
#' sparsity?
#' @param slice.info Logical. Should slice info be stored in the
#' output?
#' @param L Number of extreme cases as stop criterion if method is
#' \code{"smc"} (sequential Monte Carlo test); ignored otherwise.
#' @param B Number (maximum) of simulations to make if method is
#' \code{"mc"} or \code{"smc"} (Monte Carlo test or sequential
#' Monte Carlo test); ignored otherwise.
#' @param ... Additional arguments.
#' @details \code{set} can be 1) a vector or 2) a right-hand sided formula in
#' which variables are separated by '+'. In either case, it is tested if the
#' first two variables in the \code{set} are conditionally independent given
#' the remaining variables in \code{set}. (Notice an abuse of the '+'
#' operator in the right-hand sided formula: The order of the variables does
#' matter.)
#'
#' If \code{set} is \code{NULL} then it is tested whether the first two
#' variables are conditionally independent given the remaining variables.
#'
#' @return An object of class `citest` (which is a list).
#' @author Søren Højsgaard, \email{sorenh@@math.aau.dk}
#' @seealso \code{\link{ciTest}}, \code{\link{ciTest_df}},
#' \code{\link{ciTest_mvn}}, \code{\link{chisq.test}}
#' @keywords htest
#' @examples
#'
#' data(lizard)
#'
#' ## lizard is has named dimnames
#' names( dimnames( lizard ))
#' ## checked with
#' is.named.array( lizard )
#'
#' ## Testing for conditional independence:
#' # the following are all equivalent:
#' ciTest(lizard, set=~diam + height + species)
#' # ciTest(lizard, set=c("diam", "height", "species"))
#' # ciTest(lizard, set=1:3)
#' # ciTest(lizard)
#' # (The latter because the names in lizard are as given above.)
#'
#' ## Testing for marginal independence
#' ciTest(lizard, set=~diam + height)
#' ciTest(lizard, set=1:2)
#'
#' ## Getting slice information:
#' ciTest(lizard, set=c("diam", "height", "species"), slice.info=TRUE)$slice
#'
#' ## Do Monte Carlo test instead of usual likelihood ratio test. Different
#' # options:
#'
#' # 1) Do B*10 simulations divided equally over each slice:
#' ciTest(lizard, set=c("diam", "height", "species"), method="mc", B=400)
#' # 2) Do at most B*10 simulations divided equally over each slice, but stop
#' # when at most L extreme values are found
#' ciTest(lizard, set=c("diam", "height", "species"), method="smc", B=400)
#' @rdname citest-array
ciTest_table <- function(x, set=NULL, statistic="dev", method="chisq", adjust.df=TRUE, slice.info=TRUE, L=20, B=200, ...){
statistic <- match.arg(toupper(statistic), c("DEV", "X2"))
method <- match.arg(toupper(method), c("CHISQ", "MC", "SMC"))
if (is.null(set)){
set <- names( dimnames(x) )
} else {
if ( inherits(set, "integer") || inherits(set, "numeric") ){
x <- tabMarg(x, set)
} else
if (inherits(set,c("formula","character"))){
set <- unlist(rhsFormula2list(set))
vn <- names(dimnames(x))
set <- vn[pmatch(set, vn)]
x <- tabMarg(x, set)
}
}
switch(method,
"CHISQ"={
.CI_X2_prim(x, statistic=statistic, adjust.df=adjust.df,
slice.info=slice.info)
},
"MC"=,"SMC"={
.CI_SMC_prim(x, statistic=statistic, method=method,
slice.info=slice.info, L=L, B=B)
}
)
}
###
### CIP test; asymptotic, based on either deviance or Pearsons X2
###
# 'x' is a named array; let u be the first name, w be the second and R
# denote the 'rest'. The function tests u _|_ w | R.
.CI_X2_prim <- function(x, statistic="DEV", adjust.df=TRUE, slice.info=TRUE){
statistic <- match.arg(toupper(statistic), c("DEV", "X2"))
vn <- names(dimnames(x))
di <- dim(x)
u <- vn[1]
w <- vn[2]
R <- vn[-(1:2)]
dim.u <- di[1]
dim.w <- di[2]
dim.R <- prod(di[-(1:2)])
t.uR <- tabMarg(x, c(u, R))
t.wR <- tabMarg(x, c(w, R))
##str(list(t.uR=t.uR, t.wR=t.wR, R=R, vn=vn))
fit.table <- fit2way_(t.uR, t.wR, R, vn)
## Evaluate test statistic
## FIXME There are functions for that in other functions
if (statistic == "DEV"){ ## Deviance
tobs <- 2 * x * log(x / fit.table)
} else { ## Pearson X2
tobs <- (x - fit.table)^2 / fit.table
}
tobs[!is.finite(tobs)] <- 0
tobsGlobal <- sum(tobs)
## Calculate df with or without adjustment for sparsity
if (!adjust.df) dofSlice <- rep.int((dim.u - 1) * (dim.w - 1), dim.R)
else {
t.uRmat <- matrix(t.uR, nrow=dim.R, byrow=TRUE)
t.wRmat <- matrix(t.wR, nrow=dim.R, byrow=TRUE)
z <- (t.uRmat > 0) * 1
dim.u.adj <- if (!is.null(dim(z))) rowSums(z) else sum(z)
z <- (t.wRmat > 0) * 1
dim.w.adj <- if (!is.null(dim(z))) rowSums(z) else sum(z)
d1 <- dim.u.adj - 1
d1[d1 < 0] <- 0
d2 <- dim.w.adj - 1
d2[d2 < 0] <- 0
dofSlice <- d1 * d2
}
dofGlobal <- sum(dofSlice)
pGlobal <- 1 - pchisq(tobsGlobal, dofGlobal)
if (length(R) && slice.info){
tobsSlice <- rowSums(matrix(tobs, nrow=dim.R, byrow=TRUE))
pSlice <- 1 - pchisq(tobsSlice, df=dofSlice)
sliceInfo <- list(statistic=tobsSlice, p.value=pSlice, df=dofSlice)
des <- expand.grid(dimnames(x)[-(1:2)])
slice <- cbind(as.data.frame(sliceInfo[1:3]), des)
} else slice <- NULL
ans <- list(statistic=tobsGlobal, p.value=pGlobal, df=dofGlobal, statname=statistic,
method="CHISQ", adjust.df=adjust.df, varNames=vn, slice=slice)
class(ans) <- "citest"
ans
}
###
### CIP test; exact, based on sequential monte carlo
###
.CI_SMC_prim <- function(x, statistic="DEV", method="SMC", L=50, B=200, slice.info=FALSE){
statistic <- match.arg(toupper(statistic), c("DEV", "X2"))
switch(method,
"MC"={
zzz <- .CI_MC_prim(x, statistic=statistic, B=10*B, slice.info=slice.info)
},
"SMC"={
zzz <- .CI_MC_prim(x, statistic=statistic, B=B, slice.info=slice.info)
tot <- as.numeric(zzz[c("n.extreme","B")])
if (slice.info){
slice <- zzz$slice
}
repeat{
if (tot[1] > L) break
zzz<- .CI_MC_prim(x, statistic=statistic, B=B, slice.info=slice.info)
tot <- tot + as.numeric(zzz[c("n.extreme","B")])
if (slice.info){
slice[,"n.extreme"] <- slice[,"n.extreme"] +
zzz$slice[,"n.extreme"]
}
}
zzz[c("p.value", "n.extreme", "B")] <- c(tot[1] / tot[2], tot)
zzz["method"] <- "SMC"
if (slice.info){
slice[,"p.value"] <- slice[,"n.extreme"] / tot[2]
zzz[["slice"]] <- slice
}
})
zzz
}
###
### CIP test; exact, based on monte carlo
###
.CI_MC_prim <- function(x, statistic="DEV", B=100, slice.info=FALSE){
statistic <- match.arg(toupper(statistic), c("DEV", "X2"))
# Calculates deviance for independence model in r x c table
.devFun2 <- function(obs, fit){
ii <- obs * fit > 0
2 * sum(obs[ii] * log(obs[ii] / fit[ii]))
}
# Calculates deviance for independence model in r x c table
.X2Fun2 <- function(obs, fit){
ii <- obs * fit > 0
a <- (obs - fit)^2 / fit
sum(a[ii])
}
.statFun <- if (statistic=="DEV") .devFun2 else .X2Fun2
dn <- dim(x)
v.idx <- seq_len(length(dn))
v1R <- v.idx[-2]
v2R <- v.idx[-1]
dim12 <- dim(x)[1:2]
dim.R <- prod(dn[-(1:2)]) ## Careful when R is empty
## Marginal tables for (v1,R) and (v2,R) as matrices. Each row
## is a configuration of R
t1R <- tabMarg(x, v1R)
t2R <- tabMarg(x, v2R)
t1R <- matrix(t1R, nrow=dim.R, byrow=TRUE)
t2R <- matrix(t2R, nrow=dim.R, byrow=TRUE)
xmat <- matrix(x, nrow=dim.R, byrow=TRUE)
## Find observed statistics for each slice
tobs.slice <- vector("numeric", dim.R)
for (ii in seq_len(dim.R)){
r.sum <- t1R[ii, ]
c.sum <- t2R[ii, ]
expected <- outerPrim(r.sum, c.sum) / sum(r.sum)
mm <- xmat[ii, ]
dim(mm) <- dim12
tobs.slice[ii] <- .statFun(mm, expected)
}
## Find reference distribution for each slice
tref.slice <- matrix(NA, nrow=dim.R, ncol=B)
n.extreme.slice <- vector("numeric", dim.R)
for (ii in seq_len(nrow(t1R))){
r.sum <- t1R[ii,]
c.sum <- t2R[ii,]
expected <- outerPrim(r.sum, c.sum) / sum(r.sum)
zzz <- r2dtable(B, r.sum, c.sum)
for (kk in seq_len(B))
tref.slice[ii, kk] <- .statFun(zzz[[kk]],expected)
n.extreme.slice[ii] <- sum(tobs.slice[ii] < tref.slice[ii, ])
}
tref.total <- colSums(tref.slice)
tobs.total <- sum(tobs.slice)
n.extreme <- sum(tobs.total < tref.total)
p.value.slice <- n.extreme.slice / B
p.value.total <- n.extreme / B
if (slice.info){
des <- expand.grid(dimnames(x)[-(1:2)])
slice <- cbind(data.frame(statistic=tobs.slice, n.extreme=n.extreme.slice,
p.value=p.value.slice, df=NA), des)
} else {
slice=NULL
}
ans <- list(statistic=tobs.total, p.value=p.value.total, df=NA, statname=statistic,
method="MC", varNames=names(dimnames(x)), n.extreme=n.extreme, B=B, slice=slice)
class(ans) <- "citest"
ans
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.