R/lpred.R

### This version of lpred() function now performs (for a given gamlss parameter)
### everything that the equivalent predict.lm() or predict.glm() performs 
### except for the newdata argument 
### for newdata the predict.gamlss() must be used
### MS Tuesday, June 15, 2004 at 11:23
lpred <-function (obj, 
                  what = c("mu","sigma","nu","tau"), 
                  parameter= NULL,
                  type = c("link", "response", "terms"), 
                 terms = NULL, 
                se.fit = FALSE, 
                  ... ) 
{
## internal function 1
## calculates the s.e.'s for a given parameters mu, sigma, nu or tau 
## based on predict.lm() function 
########################################################################
######################################################################## 
# --------cal.se  start here -------------------------------------------
 cal.se <- function(obj, what ) 
  {   
  # for some additive terms the X contains zero columns 
      X <- obj[[paste(what,"x",sep=".")]]
     # n <- obj$N
      p <- obj[[paste(what,"qr",sep=".")]]$rank # 
     p1 <- seq(len = p)
    piv <- obj[[paste(what,"qr",sep=".")]]$pivot[p1]
  XRinv <- X[, piv] %*% qr.solve(qr.R(obj[[paste(what,"qr",sep=".")]])[p1, p1]) 
     vl <- drop(XRinv^2 %*% rep(1, p))
smo.var <- obj[[paste(what,"var",sep=".")]] 
     # if smoothing
   if (!is.null(smo.var)) 
    {     vl <- vl +  rowSums(smo.var) }  
  sqrt(vl)             
  }
#---------cal.se ends here ----------------------------------------------
#########################################################################
## internal function 2
## calculates the terms for a given parameters mu, sigma, nu or tau 
## based on predict.lm() function 
#--------cal.terms starts here 
 cal.terms <- function(obj, what, se.fit, terms)
  {
     tt <- obj[[paste(what,"terms",sep=".")]]  # get the `par.terms'
      n <- obj$N                               # no of observations
      p <- obj[[paste(what,"qr",sep=".")]]$rank# no of fitted terms 
     p1 <- seq(len = p)                        #
    piv <- obj[[paste(what,"qr",sep=".")]]$pivot[p1] # 1,2,...,p
     mm <- obj[[paste(what,"x",sep=".")]]      # design matrix
      X <- obj[[paste(what,"x",sep=".")]]      # again the design matrix
      w <- obj[[paste(what,"wt",sep=".")]]     # param iterative weights
   beta <- obj[[paste(what,"coefficients",sep=".")]]# param.coef
smo.mat <- obj[[paste(what,"s",sep=".")]]      # param smoothers
smo.var <- obj[[paste(what,"var",sep=".")]]    # param var   
     aa <- attr(mm, "assign")                  # attributes of the design matrix
     ll <- attr(tt, "term.labels")             # attributes of the param terms
   if (attr(tt, "intercept") > 0)              # if intercepts  
     ll <- c("(Intercept)", ll) 
    aaa <- factor(aa, labels = ll)             # factor conttaining the names  
   asgn <- split(order(aa), aaa)               # split position of terms according to names
  hasintercept <- attr(tt, "intercept") > 0
if (hasintercept)                           # if there is intercept evaluate the terms constant
  {
       asgn$"(Intercept)" <- NULL
                      avx <- colMeans(mm)
               termsconst <- sum(avx[piv] * beta[piv])
  }
 nterms <- length(asgn)                       # number of terms 
if (nterms > 0) 
  {
           predictor <- matrix(ncol = nterms, nrow = NROW(X))
           dimnames(predictor) <- list(rownames(mm), names(asgn))
   if (se.fit ) 
      {
                ip <- matrix(ncol = nterms, nrow = NROW(X))
      dimnames(ip) <- list(rownames(X), names(asgn))
              Rinv <- qr.solve(qr.R(obj[[paste(what,"qr",sep=".")]])[p1, p1])
      }
   if (hasintercept) 
                 X <- sweep(X, 2, avx)          # design
#     matrix(X) - average(X)
             unpiv <- rep.int(0, NCOL(X))
        unpiv[piv] <- p1                   # position              
    for (i in seq(1, nterms, length = nterms)) 
      {
           iipiv <- asgn[[i]]
              ii <- unpiv[iipiv]
  iipiv[ii == 0] <- 0
  predictor[, i] <- if (any(iipiv > 0)) # ms Thursday, May 1, 2008 at 10:13
                     X[, iipiv, drop = FALSE] %*% beta[iipiv]
                    else 0
                   if (se.fit ) 
                    ip[, i] <- if (any(iipiv > 0))  # ms Thursday, May 1, 2008 at 10:13
                    as.matrix(X[, iipiv, drop = FALSE] %*% Rinv[ii, , drop = FALSE])^2 %*% rep.int(1,p)
                  else 0
      }
    if (!is.null(smo.mat)) 
      {
             colnameS <- colnames(smo.mat)
         nofsmoothers <- length(colnameS)
          for (iN in seq(1,nofsmoothers, length = nofsmoothers))
              {
       predictor[,colnameS[iN]] <- predictor[,colnameS[iN]]+smo.mat[,colnameS[iN]]
              if (se.fit ) 
                {
              ip[,colnameS[iN]] <- ip[,colnameS[iN]]+smo.var[,colnameS[iN]]
                }
             }  
      }
            if (!is.null(terms)) 
            {   
                predictor <- predictor[, terms, drop = FALSE]
                if (se.fit) 
                  ip <- ip[, terms, drop = FALSE]
            }
  }
        else 
  {
            predictor <- ip <- matrix(0, n, 0)
  }
attr(predictor, "constant") <- if (hasintercept)  termsconst
                                   else 0
if (se.fit) 
        list(fit = predictor, se.fit = sqrt(ip) )
     else predictor
  }
#----------- cal.terms stops here  --------------------------------------
#########################################################################
#########################################################################
## the proper function lp starts here 
#########################################################################
#########################################################################
    if (!is.gamlss(obj))  stop(paste("This is not an gamlss object", "\n", "")) 
    what <- if (!is.null(parameter))  {
            match.arg(parameter, choices=c("mu", "sigma", "nu", "tau"))} else  match.arg(what)
    type <- match.arg(type)
if (!se.fit)
  {
  pred <- switch(type, 
                 link = obj[[paste(what,"lp", sep = ".")]],
             response = obj[[paste(what,"fv", sep = ".")]], 
                terms = cal.terms(obj = obj, what = what, 
                                  se.fit = se.fit, terms = terms) 
                 )
  }
  else 
  {
  pred <- switch(type, 
                 link = list(fit = obj[[paste(what,"lp",sep=".")]],
                             se.fit = cal.se(obj = obj, what = what) ),              # I need se(mu)=(dmu/deta)*se(eta)
             response = {
             dmudeta <- try( abs(gamlss.family(eval(parse(text=paste(family(obj)[1],"(",what,".link=",# ms 
        eval(parse(text=(paste("obj$",what,".link", sep="")))),")", sep=""))
                  ))[[paste(what,"dr",sep=".")]](obj[[paste(what,"lp",sep=".")]])) , silent = TRUE) 
if (any(class(dmudeta)%in%"try-error")) 
         {
 dmudeta <- abs(eval(parse(text=paste(obj$family[1],"$",what, ".dr","(", "obj$",what,".lp",")", sep=""))))
         }                       
             list(fit = obj[[paste(what,"fv",sep=".")]],                  # eta:  obj[[paste(what, "lp", sep=".")]]
                             se.fit = cal.se(obj = obj, what = what)*dmudeta)          
                         }, 
                terms = cal.terms(obj = obj, what = what , se.fit = se.fit, terms = terms) 
                 )                
  }  
  if (!is.null(obj$na.action))
   {   
    pred <- napredict(obj$na.action, lp)
    if (se.fit) vl <- napredict(obj$na.action, vl)
   }
pred
}

Try the gamlss package in your browser

Any scripts or data that you put into this service are public.

gamlss documentation built on May 29, 2024, 6:08 a.m.