Nothing
#' Test the \code{gbm} package.
#'
#' Run tests on \code{gbm} functions to perform logical checks and
#' reproducibility.
#'
#' The function uses functionality in the \code{RUnit} package. A fairly small
#' validation suite is executed that checks to see that relative influence
#' identifies sensible variables from simulated data, and that predictions from
#' GBMs with Gaussian, Cox or binomial distributions are sensible,
#'
#' @aliases validate.gbm test.gbm test.relative.influence
#' @return An object of class \code{RUnitTestData}. See the help for
#' \code{RUnit} for details.
#' @note The test suite is not comprehensive.
#' @author Harry Southworth
#' @seealso \code{\link{gbm}}
#' @keywords models
#' @examples
#'
#' # Uncomment the following lines to run - commented out to make CRAN happy
#' #library(RUnit)
#' #val <- validate.texmex()
#' #printHTMLProtocol(val, "texmexReport.html")
#' @export
test.gbm <- function(){
# Based on example in R package
# Gaussian example
############################################################################
## test Gaussian distribution gbm model
set.seed(123)
cat("Running least squares regression example.\n")
# create some data
N <- 1000
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- factor(sample(letters[1:4],N,replace=T))
X4 <- ordered(sample(letters[1:6],N,replace=T))
X5 <- factor(sample(letters[1:3],N,replace=T))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]
SNR <- 10 # signal-to-noise ratio
Y <- X1**1.5 + 2 * (X2**.5) + mu
sigma <- sqrt(var(Y)/SNR)
Y <- Y + rnorm(N,0,sigma)
# create a bunch of missing values
X1[sample(1:N,size=100)] <- NA
X3[sample(1:N,size=300)] <- NA
w <- rep(1,N)
data <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)
# fit initial model
gbm1 <- gbm(Y~X1+X2+X3+X4+X5+X6, # formula
data=data, # dataset
var.monotone=c(0,0,0,0,0,0), # -1: monotone decrease, +1: monotone increase, 0: no monotone restrictions
distribution="gaussian", # bernoulli, adaboost, gaussian, poisson, coxph, or
# list(name="quantile",alpha=0.05) for quantile regression
n.trees=2000, # number of trees
shrinkage=0.005, # shrinkage or learning rate, 0.001 to 0.1 usually work
interaction.depth=3, # 1: additive model, 2: two-way interactions, etc
bag.fraction = 0.5, # subsampling fraction, 0.5 is probably best
train.fraction = 0.5, # fraction of data for training, first train.fraction*N used for training
n.minobsinnode = 10, # minimum number of obs needed in each node
keep.data=TRUE,
cv.folds=10) # do 10-fold cross-validation
# Get best model
best.iter <- gbm.perf(gbm1,method="cv", plot.it=FALSE) # returns cv estimate of best number of trees
set.seed(223)
# make some new data
N <- 1000
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- factor(sample(letters[1:4],N,replace=TRUE))
X4 <- ordered(sample(letters[1:6],N,replace=TRUE))
X5 <- factor(sample(letters[1:3],N,replace=TRUE))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]
# Actual underlying signal
Y <- X1**1.5 + 2 * (X2**.5) + mu
# Want to see how close predictions are to the underlying signal; noise would just interfere with this
# Y <- Y + rnorm(N,0,sigma)
data2 <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)
# predict on the new data using "best" number of trees
f.predict <- predict(gbm1,data2,best.iter) # f.predict will be on the canonical scale (logit,log,etc.)
# Base the validation tests on observed discrepancies
RUnit::checkTrue(abs(mean(data2$Y-f.predict)) < 0.01, msg="Gaussian absolute error within tolerance")
RUnit::checkTrue(sd(data2$Y-f.predict) < sigma , msg="Gaussian squared erroor within tolerance")
############################################################################
## test coxph distribution gbm model
## COX PROPORTIONAL HAZARDS REGRESSION EXAMPLE
cat("Running cox proportional hazards regression example.\n")
# create some data
set.seed(2)
N <- 3000
X1 <- runif(N)
X2 <- runif(N)
X3 <- factor(sample(letters[1:4],N,replace=T))
mu <- c(-1,0,1,2)[as.numeric(X3)]
f <- 0.5*sin(3*X1 + 5*X2^2 + mu/10)
tt.surv <- rexp(N,exp(f))
tt.cens <- rexp(N,0.5)
delta <- as.numeric(tt.surv <= tt.cens)
tt <- apply(cbind(tt.surv,tt.cens),1,min)
# throw in some missing values
X1[sample(1:N,size=100)] <- NA
X3[sample(1:N,size=300)] <- NA
# random weights if you want to experiment with them
w <- rep(1,N)
data <- data.frame(tt=tt,delta=delta,X1=X1,X2=X2,X3=X3)
# fit initial model
gbm1 <- gbm(Surv(tt,delta)~X1+X2+X3, # formula
data=data, # dataset
weights=w,
var.monotone=c(0,0,0), # -1: monotone decrease, +1: monotone increase, 0: no monotone restrictions
distribution="coxph",
n.trees=3000, # number of trees
shrinkage=0.001, # shrinkage or learning rate, 0.001 to 0.1 usually work
interaction.depth=3, # 1: additive model, 2: two-way interactions, etc
bag.fraction = 0.5, # subsampling fraction, 0.5 is probably best
train.fraction = 0.5, # fraction of data for training, first train.fraction*N used for training
cv.folds = 5, # do 5-fold cross-validation
n.minobsinnode = 10, # minimum total weight needed in each node
keep.data = TRUE)
best.iter <- gbm.perf(gbm1,method="test", plot.it=FALSE) # returns test set estimate of best number of trees
# make some new data
set.seed(2)
N <- 1000
X1 <- runif(N)
X2 <- runif(N)
X3 <- factor(sample(letters[1:4],N,replace=T))
mu <- c(-1,0,1,2)[as.numeric(X3)]
f <- 0.5*sin(3*X1 + 5*X2^2 + mu/10) # -0.5 <= f <= 0.5 via sin fn.
tt.surv <- rexp(N,exp(f))
tt.cens <- rexp(N,0.5)
data2 <- data.frame(tt=apply(cbind(tt.surv,tt.cens),1,min),
delta=as.numeric(tt.surv <= tt.cens),
f=f,
X1=X1,X2=X2,X3=X3)
# predict on the new data using "best" number of trees
# f.predict will be on the canonical scale (logit,log,etc.)
f.predict <- predict(gbm1, newdata = data2, n.trees = best.iter)
#plot(data2$f,f.predict)
# Use observed sd
RUnit::checkTrue(sd(data2$f - f.predict) < 0.4, msg="Coxph: squared error within tolerance")
############################################################################
## Test bernoulli distribution gbm model
set.seed(1)
cat("Running logistic regression example.\n")
# create some data
N <- 1000
X1 <- runif(N)
X2 <- runif(N)
X3 <- factor(sample(letters[1:4],N,replace=T))
mu <- c(-1,0,1,2)[as.numeric(X3)]
p <- 1/(1+exp(-(sin(3*X1) - 4*X2 + mu)))
Y <- rbinom(N,1,p)
# random weights if you want to experiment with them
w <- rexp(N)
w <- N*w/sum(w)
data <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3)
# fit initial model
gbm1 <- gbm(Y~X1+X2+X3, # formula
data=data, # dataset
weights=w,
var.monotone=c(0,0,0), # -1: monotone decrease, +1: monotone increase, 0: no monotone restrictions
distribution="bernoulli",
n.trees=3000, # number of trees
shrinkage=0.001, # shrinkage or learning rate, 0.001 to 0.1 usually work
interaction.depth=3, # 1: additive model, 2: two-way interactions, etc
bag.fraction = 0.5, # subsampling fraction, 0.5 is probably best
train.fraction = 0.5, # fraction of data for training, first train.fraction*N used for training
cv.folds=5, # do 5-fold cross-validation
n.minobsinnode = 10) # minimum total weight needed in each node
best.iter.test <- gbm.perf(gbm1,method="test", plot.it=FALSE) # returns test set estimate of best number of trees
best.iter <- best.iter.test
# make some new data
set.seed(2)
N <- 1000
X1 <- runif(N)
X2 <- runif(N)
X3 <- factor(sample(letters[1:4],N,replace=T))
mu <- c(-1,0,1,2)[as.numeric(X3)]
p <- 1/(1+exp(-(sin(3*X1) - 4*X2 + mu)))
Y <- rbinom(N,1,p)
data2 <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3)
# predict on the new data using "best" number of trees
# f.predict will be on the canonical scale (logit,log,etc.)
f.1.predict <- predict(gbm1,data2, n.trees=best.iter.test)
# compute quantity prior to transformation
f.new = sin(3*X1) - 4*X2 + mu
# Base the validation tests on observed discrepancies
RUnit::checkTrue(sd(f.new - f.1.predict) < 1.0 )
invisible()
}
################################################################################
########################### test.relative.influence() ##########################
########################### ##########################
#' @export
test.relative.influence <- function(){
# Test that relative.influence really does pick out the true predictors
set.seed(1234)
X1 <- matrix(nrow=1000, ncol=50)
X1 <- apply(X1, 2, function(x) rnorm(1000)) # Random noise
X2 <- matrix(nrow=1000, ncol=5)
X2 <- apply(X2, 2, function(x) c(rnorm(500), rnorm(500, 3))) # Real predictors
cls <- rep(c(0, 1), ea=500) # Class
X <- data.frame(cbind(X1, X2, cls))
mod <- gbm(cls ~ ., data= X, n.trees=1000, cv.folds=5,
shrinkage=.01, interaction.depth=2)
ri <- rev(sort(relative.influence(mod)))
wh <- names(ri)[1:5]
res <- sum(wh %in% paste("V", 51:55, sep = ""))
RUnit::checkEqualsNumeric(res, 5, msg="Testing relative.influence identifies true predictors")
}
################################################################################
################################ validate.gbm() ################################
################################ ################################
#' @export
validate.gbm <- function () {
wh <- (1:length(search()))[search() == "package:gbm"]
tests <- objects(wh)[substring(objects(wh), 1, 5) == "test."]
# Create temporary directory to put tests into
sep <- if (.Platform$OS.type == "windows") "\\" else "/"
dir <- file.path(tempdir(), "gbm.tests", fsep = sep)
dir.create(dir)
for (i in 1:length(tests)) {
str <- paste(dir, sep, tests[i], ".R", sep = "")
dump(tests[i], file = str)
}
res <- RUnit::defineTestSuite("gbm", dirs = dir, testFuncRegexp = "^test.+",
testFileRegexp = "*.R")
cat("Running gbm test suite.\nThis will take some time...\n\n")
RUnit::runTestSuite(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.