R/traits-fossil.R

Defines functions fitContinuousMCMC .ou.vcv

Documented in fitContinuousMCMC

# recreating ouMatrix from geiger1.3-1
.ou.vcv<-function(vcv){
    fx=function(alpha){
        vcvDiag <- diag(vcv)
        diagi <- matrix(vcvDiag, nrow = length(vcvDiag), ncol = length(vcvDiag))
        diagj <- matrix(vcvDiag, nrow = length(vcvDiag), ncol = length(vcvDiag), byrow = TRUE)
        Tij = diagi + diagj - (2 * vcv)
        vcvRescaled = (1/(2 * alpha)) * exp(-alpha * Tij) * (1 - exp(-2 * alpha * vcv))
        return(vcvRescaled)
    }
    fx
}


# from phytools::vcvPhylo
.vcv.anc<-
function (tree, anc.nodes = TRUE)
{
    n <- length(tree$tip.label)
    h <- .nodeheights(tree)[order(tree$edge[, 2]), 2]
    h <- c(h[1:n], 0, h[(n + 1):length(h)])
    M <- mrca(tree, full = anc.nodes)[c(1:n, anc.nodes * (n +
    2:tree$Nnode)), c(1:n, anc.nodes * (n + 2:tree$Nnode))]
    C <- matrix(h[M], nrow(M), ncol(M))
    if (anc.nodes)
    rownames(C) <- colnames(C) <- c(tree$tip.label, n + 2:tree$Nnode)
    else rownames(C) <- colnames(C) <- tree$tip.label
    return(C)
}


# from phytools::nodeHeights
.nodeheights<-
#nodeHeights <- similar to heights.phylo in geiger
function (tree)
{
    if (attr(tree, "order") != "cladewise" || is.null(attr(tree,
    "order")))
    t <- reorder(tree)
    else t <- tree
    root <- length(t$tip) + 1
    X <- matrix(NA, nrow(t$edge), 2)
    for (i in 1:nrow(t$edge)) {
        if (t$edge[i, 1] == root) {
            X[i, 1] <- 0
            X[i, 2] <- t$edge.length[i]
        }
        else {
            X[i, 1] <- X[match(t$edge[i, 1], t$edge[, 2]), 2]
            X[i, 2] <- X[i, 1] + t$edge.length[i]
        }
    }
    if (attr(tree, "order") != "cladewise" || is.null(attr(tree,
    "order")))
    o <- apply(matrix(tree$edge[, 2]), 1, function(x, y) which(x ==
    y), y = t$edge[, 2])
    else o <- 1:nrow(t$edge)
    return(X[o, ])
}

aicm<-
#AICM<-
function(x) {
	return( (2*var(x)) - (2*mean(x)) )
}

.bfHME <-
#BayesFactorHME <- similar to bf in geiger
function(model1, model2, BF = c("bayesfactor","log10BF", "lnBF")) {

	ml1 <- .slater.hme(model1);
	ml2 <- .slater.hme(model2);
	bf <- ml1 - ml2;


	if(BF == "bayesfactor") return(list("marginal likelihood of model 1" = ml1,"marginal likelihood of model 2" = ml2, "Bayes Factor" = exp(bf)));
	if(BF == "log10BF") return(list("marginal likelihood of model 1" = ml1,"marginal likelihood of model 2" = ml2, "log10(Bayes Factor)" = log(exp(bf), base = 10)));
	if(BF == "lnBF") return(list("marginal likelihood of model 1" = ml1,"marginal likelihood of model 2" = ml2, "ln(Bayes Factor)" = bf));


	}

.slater.sigsq <-
#MLsigmasq <-
function(C, d, root, inv.C = NULL) {

	N <-length(d);
	X <- as.numeric(d);
	EX <- root;
	if(is.null(inv.C)){
		inv.C <- solve(C);
	}

	return(((t(X-EX)) %*% inv.C %*% (X - EX)) / N)

	}

.acdc.prior <-
#ACDC.prior <-
function(phy, model, decrease.max = 1.0e-5, increase.max = 1.0e+5) {

    max.bt <- max(heights(phy))


	if(model == "ACDC.exp") {
		prior.min <- log(decrease.max) / max.bt;
		prior.max <- log(increase.max) / max.bt;
	} else if(model == "ACDC.lin") {
		prior.min <- (decrease.max - 1) / max.bt;
		prior.max <- (increase.max - 1) / max.bt;
	}
	return(list(min = prior.min, max = prior.max));
}

.slater.branchingtimesfossil <-
#BranchingTimesFossil <- similar to heights.phylo in geiger
function (phy, tol = .Machine$double.eps^0.5)
{
    if (!inherits(phy, "phylo"))
        stop("object \"phy\" is not of class \"phylo\"")
    phy2 <- phy
    phy <- new2old.phylo(phy)
    tmp <- as.numeric(phy$edge)
    nb.tip <- max(tmp)
    nb.node <- -min(tmp)
    xx <- as.numeric(rep(NA, nb.tip + nb.node))
    names(xx) <- as.character(c(-(1:nb.node), 1:nb.tip))
    xx["-1"] <- 0
    for (i in 2:length(xx)) {
        nod <- names(xx[i])
        ind <- which(as.numeric(phy$edge[, 2]) == nod)
        base <- phy$edge[ind, 1]
        xx[i] <- xx[base] + phy$edge.length[ind]
    }
    bt <- abs(xx - max(xx));

	for(i in 1:length(bt)) {

		if(bt[i]<.Machine$double.eps^0.5) bt[i] <- 0; 	}

	names(bt) <- c(seq(nb.tip+1, nb.tip+nb.node), phy$tip.label)


	return(bt);
}


fitContinuousMCMC <-
function(phy, d, model = c("BM", "Trend", "SSP", "ACDC.exp", "ACDC.lin"), Ngens = 1000000, sampleFreq = 1000, printFreq = 1000, propwidth = rep(0.1, 5), node.priors = NULL, root.prior = NULL, acdc.prior = NULL, sample.node.states = T, outputName = "mcmc.output") {

	# Preliminaries #
	# check names and remove extraneous tips
	td <- treedata(phy, d);
	phy <- td$phy;
	d <- as.numeric(td$data); names(d) <- rownames(td$data);
	rm(td);
	d <- d[match(phy$tip.label, names(d))];
	## error checking ##
	if(is.null(node.priors)) print("no node priors have been specified. a standard model will be fit instead.");
	if (!is.null(node.priors)) {
		if(!is.data.frame(node.priors)) stop("the prior data need to be in a data frame");
		if(length(setdiff(c(as.character(node.priors[,1]), as.character(node.priors[,2])), phy$tip.label))>0) {
			stop("one or more node priors are defined based on taxa that are not represented in both the tree and data. Try using treedata() to check your taxon-overlap and redefine the priors")
		}
	}
	#############################################################

	## check which kind of model is being used and designate the appropriate vcv and priors ##

	if(!is.null(node.priors) | sample.node.states == T) {
		C <- .vcv.anc(phy, anc.nodes =TRUE);
		sampling.nodes <- TRUE;
	}	else {
		sampling.nodes <- FALSE;
		C <- .vcv.anc(phy, anc.nodes =FALSE);
	}

	if(!is.null(node.priors)) {
		node.priors <- data.frame(node = apply(node.priors, 1, foo <- function(phy, x) return(.slater.mrca(phy, x[1], x[2])), phy = phy), value1 = node.priors[,3], value2 = node.priors[,4], prior.type = node.priors[,5]);
		node.priors.curr.den = numeric(nrow(node.priors))
	}  else {
		node.priors.curr.den <- 0;
	}

	if(!is.null(root.prior)) {if(length(root.prior) < 2)  {stop(" if using a fossil prior on the root, you must specify distribution parameters using the root.prior argument") }};

	if(model=="EB") stop("EB is now an invalid option, please choose one of ACDC.lin or ACDC.exp; see documentation for more details.")

	model=match.arg(model, c("BM", "Trend", "SSP", "ACDC.exp", "ACDC.lin"))


	if(model == "ACDC.exp" | model == "ACDC.lin") {
		if(is.null(acdc.prior)) {
		scaler.prior <- .acdc.prior(phy, model);
		print(paste("no acdc.prior was specified. the values ",scaler.prior[1],":", scaler.prior[2], " have been used based on the input tree"))
		} else {
			scaler.prior <- acdc.prior;
		}
	} else {
		scaler.prior <- NULL;
	}

	if(!is.null(root.prior)) {
		root.prior <- data.frame(node = length(phy$tip.label)+1, value1 = as.numeric(root.prior[1]), value2 = as.numeric(root.prior[2]), "prior.type" = root.prior[3]);
		colnames(root.prior)[4] <- "prior.type";
	} else {
		root.prior <- NULL;
	}

	#############################################################

	starting<- .slater.initiate(phy,d, C, node.priors, model, outputName, scaler.prior,root.prior, sampling.nodes);

	params <- starting$params;
	paramslogLk <- starting$paramslogLk;
	output <- starting$output;
	node.output <- starting$node.output;
	curr.root.prior <- starting$root.prior;
	if(!is.null(node.priors)) {
		node.priors.curr.den <- starting$node.priors;
		fossil.nodes <- match(node.priors$node, names(params$node.states));
	}

	###### now start the MCMC #######
	if(model == "BM"| model == "ACDC.lin" | model == "ACDC.exp") k <- 3;
	if(model == "SSP" | model == "Trend") k <- 4;
	if(model == "OU") k <- 5;

	accept <- rep(0, k);

	for(ngen in 1:Ngens) {

		props <- .slater.generateproposal(ngen, propwidth, model, params, node.priors, root.prior, scaler.prior, sampling.nodes);

		ProplogLk <- .slater.getbrownianlk(model, d, C, props);
		if(!is.null(node.priors)) {
			prop.node.priors <- .slater.dnodeprior(props$node.states[fossil.nodes], node.priors);
		} else {
			prop.node.priors <- 0;
		}
		if(!is.null(root.prior)) {
			prop.root.prior <- .slater.dnodeprior(props$root, root.prior)
		} else {
			prop.root.prior <- 0;
		}

		h <- .slater.lkratio(ProplogLk, paramslogLk) * exp((prop.root.prior + sum(prop.node.priors)) - (curr.root.prior + sum(node.priors.curr.den))) # compute the acceptance probability

		p <- runif(1); # draw a threshold for acceptance

		if(h == Inf | is.na(h)) h <- 0; ## this catches "bad" (i.e. infinite) likelihoods ##
		if(h >= p) { ## do we accept or not?
			params <- props;
			paramslogLk <- ProplogLk;
			curr.root.prior <- prop.root.prior;
			node.priors.curr.den <- prop.node.priors;
			accept <- .slater.updateacceptance(k, accept, ngen);
		}

		if (ngen %% sampleFreq == 0) { ## if on a sampling generation, retain parameters and likelihoods.
			if(model == "OU") {
				p.out <- 4;
			} else {
				p.out <- 3;
			}
			curr.pr <- sum(c(curr.root.prior, node.priors.curr.den));
			curr.post <- paramslogLk + curr.pr;
			cat(ngen, curr.post, curr.pr, paramslogLk, as.numeric(na.omit(as.numeric(unlist(params)[1:p.out]))), file = output, sep = "\t");
			cat("\n", file = output);

			if(sampling.nodes == T) {
				cat(params$root, as.numeric(na.omit(as.numeric(unlist(params$node.states)))), file = node.output, sep = "\t");
				cat("\n", file = node.output);
			}
		}

		if (ngen	%% printFreq == 0) { ## if on a print generation, print to screen.
			cat("Generation:", ngen, " ", accept/(ngen/k), "\n\n");
		}

	} # end mcmc loop

	close(output);
	if(sampling.nodes == T) {
		close(node.output);
	}

}

.slater.generateproposal <-
#generateProposal <-
function(ngen, propwidth, model, params, node.priors, root.prior, scaler.prior = NULL, sampling.nodes) {

	## draws rate parameters on the ln scale so range from -inf to inf.
	pwRoot <- propwidth[1];
	pwRate <- propwidth[2];
	pwScale <- propwidth[3];
	pwTheta <- propwidth[4]
	pwFossil <- propwidth[5];

	if(!is.null(node.priors) | sampling.nodes == T) {

		if(model == "BM"){
			if(ngen %% 3 == 1) if(is.null(root.prior)) {
				params$root <- .slater.getproposal(params$root, pwRoot);
			} else {
				params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
			}
			if(ngen %% 3 == 2) params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T, min = -Inf, max = Inf));
			if(ngen %% 3 == 0)	{
				fu <- .slater.updatewhichnode(model, ngen, params$node.states);
				params$node.states[fu] <- .slater.nodeupdate(fu, model, params$node.states, node.priors, pwFossil);
			}
		} else if (model == "Trend") {

			if(ngen %% 4 == 1) if(is.null(root.prior)) {
				params$root <- .slater.getproposal(params$root, pwRoot);
			} else {
				params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
			}
			if(ngen %% 4 == 2) params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T,  min = -Inf, max = Inf));
			if(ngen %% 4 == 3) params$scaler <- .slater.getproposal(params$scaler, pwScale, bound = F);
			if(ngen %% 4 == 0)	{
				fu <- .slater.updatewhichnode(model, ngen, params$node.states);
				params$node.states[fu] <- .slater.nodeupdate(fu, model, params$node.states, node.priors, pwFossil);
			}

		} else if(model =="ACDC.lin" | model == "ACDC.exp") {

			if(ngen %% 3 == 1) if(is.null(root.prior)) {
				params$root <- .slater.getproposal(params$root, pwRoot);
			} else {
				params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
			}
			if(ngen %% 3 == 2) {
				params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T,  min = -Inf, max = Inf));
 				params$scaler <- .slater.getproposal(params$scaler, pwScale, bound = T, min = scaler.prior$min, max = scaler.prior$max);
 			}
			if(ngen %% 3 == 0)	{
				fu <- .slater.updatewhichnode(model, ngen, params$node.states);
				params$node.states[fu] <- .slater.nodeupdate(fu, model, params$node.states, node.priors, pwFossil);
			}

		} else if (model == "SSP") {
			if(ngen %% 4 == 1) if(is.null(root.prior)) {
			params$root <- .slater.getproposal(params$root, pwRoot);
		} else {
			params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
		}
			if(ngen %% 4 == 2) params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T,  min = -Inf, max = Inf));
			if(ngen %% 4 == 3)	params$scaler <- exp(.slater.getproposal(log(params$scaler), pwScale, bound = T, min = log(10^-5), max = Inf));
			if(ngen %% 4 == 0)	{
				fu <- .slater.updatewhichnode(model, ngen, params$node.states);
				params$node.states[fu] <- .slater.nodeupdate(fu, model, params$node.states, node.priors, pwFossil);
			}

		} else if(model == "OU") {
			if(ngen %% 5 == 1) if(is.null(root.prior)) {
				params$root <- .slater.getproposal(params$root, pwRoot);
			} else {
				params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
			}
			if(ngen %% 5 == 2) params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T,  min = -Inf, max = Inf));
			if(ngen %% 5 == 3)	params$scaler <- exp(.slater.getproposal(log(params$scaler), pwScale, bound = T, min =  log(10^-5), max = Inf));
			if(ngen %% 5 == 4) 	params$theta <- .slater.getproposal(params$theta, pwTheta);
			if(ngen %% 5 == 0){
				fu <- .slater.updatewhichnode(model, ngen, params$node.states);
				params$node.states[fu] <- .slater.nodeupdate(fu, model, params$node.states, node.priors, pwFossil);
			}
		}
	} else  {

		if(model == "BM"){
			if(ngen %% 2 == 1) if(is.null(root.prior)) {
				params$root <- .slater.getproposal(params$root, pwRoot);
			} else {
				params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
			}
			if(ngen %% 2 == 0) params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T, min = -Inf, max = Inf));

		} else if (model == "Trend") {
			if(ngen %% 3 == 1) if(is.null(root.prior)) {
				params$root <- .slater.getproposal(params$root, pwRoot);
			} else {
				params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
			}
			if(ngen %% 3 == 2) params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T,  min = -Inf, max = Inf));
			if(ngen %% 3 == 0) params$scaler <- .slater.getproposal(params$scaler, pwScale, bound = F);

		} else if(model =="ACDC.lin" | model == "ACDC.exp") {

			if(ngen %% 2 == 1) if(is.null(root.prior)) {
				params$root <- .slater.getproposal(params$root, pwRoot);
			} else {
				params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
			}
			if(ngen %% 2 == 0) {
				params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T,  min = -Inf, max = Inf));
 				params$scaler <- .slater.getproposal(params$scaler, pwScale, bound = T, min = scaler.prior$min, max = scaler.prior$max);
 			}
		} else if (model == "SSP") {
			if(ngen %% 3 == 1) if(is.null(root.prior)) {
				params$root <- .slater.getproposal(params$root, pwRoot);
			} else {
				params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
			}
			if(ngen %% 3 == 2) params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T,  min = -Inf, max = Inf));
			if(ngen %% 3 == 0)	params$scaler <- exp(.slater.getproposal(log(params$scaler), pwScale, bound = T, min = log(10^-5), max = Inf));

		} else if(model == "OU") {
			if(ngen %% 4 == 1) if(is.null(root.prior)) {
				params$root <- .slater.getproposal(params$root, pwRoot);
			} else {
				params$root <- .slater.nodeupdate(1, model, params$root, root.prior, pwRoot)
			}
			if(ngen %% 4 == 2) params$sigma <- exp(.slater.getproposal(log(params$sigma), pwRate, bound= T,  min = -Inf, max = Inf));
			if(ngen %% 4 == 3)	params$scaler <- exp(.slater.getproposal(log(params$scaler), pwScale, bound = T, min =  log(10^-5), max = Inf));
			if(ngen %% 4 == 0) 	params$theta <- .slater.getproposal(params$theta, pwTheta);
		}
	}

	return(params);

}

.slater.generatestartingvalues <-
#generateStartingValues <-
function(phy, d, C, model, node.priors, root.prior, scaler.prior, sampling.nodes) {

		node.pics <- ace(d, phy, type = "continuous", method = "pic")$ace;

		if(sampling.nodes == T) {
			node.states <- node.pics[-1];
			if(!is.null(node.priors)){
				repl <- match(node.priors$node, names(node.states))
				for(i in 1:length(repl)) {
					if(node.priors$prior.type[i] == "normal") node.states[repl[i]] <- rnorm(1, mean = node.priors[i,2], sd = node.priors[i,3]);
					if(node.priors$prior.type[i] == "uniform") node.states[repl[i]] <- runif(1, min = node.priors[i,2], max = node.priors[i,3]);
					if(node.priors$prior.type[i] == "exp") node.states[repl[i]] <- node.priors[i,2] + rexp(1, rate = node.priors[i,3]);
				}
			}
		d <- c(d, node.states);
		} else {
			node.states <- NULL;
		}

		if(!is.null(root.prior)) {
			if(root.prior$prior.type == "normal") root.val<- rnorm(1, mean = root.prior[1,2], sd =root.prior[1,3]);
			if(root.prior$prior.type == "uniform") root.val <- runif(1, min = root.prior[1,2], max =root.prior[1,3]);
			if(root.prior$prior.type == "exp") root.val <- root.prior[1,2] + rexp(1, rate = root.prior[1,3]);
		} else {
			root.val <- node.pics[1];
		}

		if(model == "BM" | model == "Trend") {
			inv.C <- solve(C);
		}

		if(model == "BM") {
			return(list("sigma" = .slater.sigsq(C, d, root.val, inv.C = inv.C)[1,1], "scaler" = NA, "root" = root.val, "node.states" = node.states, "inv.C" = inv.C));
		}else if(model == "OU") {
				return(list("sigma" = .slater.sigsq(C, d, root.val, inv.C = NULL)[1,1], "scaler" = runif(1,10^-5,1), "theta" = root.val, "root" = root.val, "node.states" = node.states));
		} else if(model == "SSP") {
				return(list("sigma" = .slater.sigsq(C, d, root.val, inv.C = NULL)[1,1], "scaler" = runif(1,10^-5,1), "root" = root.val, "node.states" = node.states));
			} else if(model == "ACDC.exp" | model == "ACDC.lin") {
				return(list("sigma" = .slater.sigsq(C, d, root.val, inv.C = NULL)[1,1], "scaler" = 0, "root" = root.val, "node.states" = node.states));
			} else if(model == "Trend"){
				return(list("sigma" = .slater.sigsq(C, d, root.val, inv.C = inv.C)[1,1], "scaler" = 0, "root" = root.val, "node.states" = node.states,"inv.C" = inv.C));
			}

	}

.slater.getbrownianlk <-
#getBrownianLk <-
function(model, d, C, params) {

	if(!is.null(params$node.states)) {
		d <- c(d, params$node.states);
	}

	N <- length(d); # the number of tips
	X <- as.numeric(d[match(rownames(C),names(d))]);
	root.val <- params$root
	V <- .slater.getvcv(C, model, params)


	if(model == "Trend") {
		EX <- root.val + (params$scaler * diag(C))
		} else if(model =="OU")  {
		EX <- (root.val * exp(-params$scaler* diag(C))) + (params$theta*(1-exp(-params$scaler* diag(C))))
		} else {
		EX <- matrix(rep(root.val,N), ncol = 1); # column vector of root states
	}
	if(model == "BM" | model == "Trend") {
		inv.V <- params$inv.C * (params$sigma ^-1);
		logL <-	-t(X-EX) %*% inv.V %*% (X-EX) / 2-N*log(2*pi) / 2-determinant(V)$modulus[1]/2;
	} else {
		logL <- -t(X-EX) %*% solve(V) %*% (X-EX) / 2-N*log(2*pi) / 2-determinant(V)$modulus[1]/2;
	}
	return(as.numeric(logL));

	}

.slater.getproposal <-
#getProposal <-
function(currentState, psi, bound = FALSE, min = NA, max = NA, prop.type = "sw") {

# This function returns a proposal using a sliding window
# Arguments;

	# currentState state <- the currentState state of the parameter;
	# psi <- a tuning parameter - here, some proportion of the standard deviation from the calibration step;
	# min <- the lower bound for the prior distribution;
	# max <- the upper bound for the prior distribution;

# Value;
	# prop <- the proposal;
	if(prop.type == "sw") {
	prop <- currentState + ((runif(1) - 0.5) * psi);
	} else if(prop.type == "mlt") {
		u <- runif(1);
		prop <- currentState * exp((u-0.5)*psi)

		}


	if(bound == TRUE) {
		if(is.na(min) & is.na(max)) stop("you must specify limits if using a bounded proposal!")
		if(!is.na(min) & is.na(max)) max <- Inf;
		if(is.na(min) & !is.na(max)) min <- -Inf;
		if (prop < min) { prop <- min + (min - prop) } # if lower than lower bound, bounce back;
		if (prop > max) { prop <- max - (prop - max) } # if higher than upper bound, bounce back;
	}

	if(prop.type == "sw") return(prop);
	if(prop.type == "mlt") return(list(prop = prop, hastings = u))
	}

.slater.getvcv <-
#getVCV <-
function(C, model, params) {
	if(model == "BM" | model == "Trend") {
		V <- C * params$sigma;
		}

	if(model == "ACDC.exp") {

		if(!params$scaler==0) {
			C <- (exp(params$scaler*C) - 1) / params$scaler
		}
		V <- C * params$sigma;
	}

	if(model == "ACDC.lin") {

		V <-  params$sigma * (C+ ((params$scaler*(C^2)) / 2))

	}

	if(model == "OU"| model == "SSP"  ) {
        oux=.ou.vcv(C)
		if(params$scaler == 0) {
			V <- C * params$sigma;
		} else {
			V <- 	oux(params$scaler)
			V <- params$sigma * V
		}
	}
	return(V);
	}


.slater.hme <-
#harmonic.mean <- similar to hme in geiger
function(x)  {return(1/ (mean(1/x)))}


.slater.initiate <-
#initiate <-
function(phy, d, C, node.priors, model, outputName, scaler.prior, root.prior, sampling.nodes) {

	params <- .slater.generatestartingvalues(phy, d, C, model, node.priors, root.prior, scaler.prior, sampling.nodes)# generate starting values for the mcmc

	## Create the output file with appropriate column headers for the specified model ##
	output <- file(paste(outputName, "_model_params.txt", sep = ""), "w");

	if(model == "BM") cat("generation","Posterior", "Prior", "logLk","sigmasq", "root", file = output, sep = "\t");
	if(model == "OU") cat("generation", "Posterior", "Prior","logLk","sigmasq","alpha", "theta", "root", file = output, sep = "\t");
	if(model == "SSP") cat("generation", "Posterior", "Prior","logLk","sigmasq","alpha", "root", file = output, sep = "\t");
	if(model == "ACDC.exp") cat("generation","Posterior", "Prior","logLk","sigmasq","r", "root",  file = output, sep = "\t");
	if(model == "ACDC.lin") cat("generation","Posterior", "Prior","logLk","sigmasq","beta", "root",  file = output, sep = "\t");
	if(model == "Trend") cat("generation","Posterior", "Prior", "logLk","sigmasq","mu", "root", file = output, sep = "\t");
	cat("\n", file = output);

	if(sampling.nodes == T) {
		node.output <- file(paste(outputName, "_nodestates.txt", sep = ""), "w");
		cat((length(phy$tip.label)+1):(length(phy$tip.label)+phy$Nnode), file = node.output, sep = "\t")
		cat("\n", file = node.output)
	} else {
		node.output <- NULL;
	}

	## get the likelihood for the starting parameters and add them to the output ##

	paramslogLk <- .slater.getbrownianlk(model, d, C, params);

	if(!is.null(node.priors)) {
	prior.prob <- .slater.dnodeprior(params$node.states[match(node.priors$node, names(params$node.states))], node.priors)
	} else {
		prior.prob <- 0;
	}
	if(!is.null(root.prior)) {
		root.prior.prob <- .slater.dnodeprior(params$root, root.prior);
	} else {
		root.prior.prob <- 0;
	}

	if(model == "OU") {
		p.out <- 4;
	} else {
		p.out <- 3;
	}

	cat(0, paramslogLk + sum(c(prior.prob, root.prior.prob)), sum(c(prior.prob, root.prior.prob)), paramslogLk, as.numeric(na.omit(as.numeric(unlist(params))[1:3])), file = output, sep = "\t");
	cat("\n", file = output);

	if(sampling.nodes == T) {
		cat(params$root, as.numeric(na.omit(as.numeric(unlist(params$node.states)))), file = node.output, sep = "\t");
		cat("\n", file = node.output);
	}

	return(list(params = params, paramslogLk = paramslogLk, output = output, node.output = node.output, node.priors = prior.prob, root.prior = root.prior.prob));
	}

.slater.lkratio <-
#lkratio <-
function(ProplogLk, paramslogLk) {

	return(exp(ProplogLk - paramslogLk));
	}

.slater.mrca <-
#mrca.of.pair <- similar to .mrca in geiger
function(phy, tip1, tip2) {
	if(is.na(match(tip1,phy$tip.label))) stop(paste(tip1, " is not a valid taxon in this tree"))
	if(is.null(tip2)) {

		bb<-which(phy$tip.label==tip1);
		mrca <- phy$edge[which(phy$edge[ ,2] == tip1), 1]
	} else {
		if(is.na(match(tip2,phy$tip.label))) stop(paste(tip2, " is not a valid taxon in this tree"))
		nn <- phy$Nnode;
		nt <- length(phy$tip.label);
		minLeaves <- nt;
		mrca <- NULL;
		for(i in 1:nn) {
			leaves <- tips(phy, i + nt);
			if(tip1 %in% leaves & tip2 %in% leaves) {
				ll <- length(leaves);
				if(ll < minLeaves) { mrca <- i + nt; minLeaves <- ll }
			}
		}
	if(is.null(mrca)) mrca <- length(phy$tip.label) + 1;
	}
	return(mrca);
	}

.slater.dnodeprior <-
#node.prior.density <-
function(fossils, node.priors) {

	#fossils <- fossils[match(node.priors$node, names(fossils))];
	pp <- numeric(nrow(node.priors))
	for(i in 1:nrow(node.priors)) {

		if(node.priors$prior.type[i] == "normal") {
			pp[i] <- dnorm(fossils[i], mean = node.priors[i,2], sd = node.priors[i,3], log = T)
		}

		if(node.priors$prior.type[i] == "uniform") {
			pp[i] <- dunif(fossils[i], min = node.priors[i,2], max = node.priors[i,3], log = T)
		}

		if(node.priors$prior.type[i] == "exp") {

			if(node.priors[i,2] > 0) {
				pp[i] <- dexp(fossils[i] -node.priors[i,2] , rate = node.priors[i,3], log = T);
			} else if(node.priors[i,2] < 0) {
				pp[i] <- dexp(fossils[i] + abs(node.priors[i,2]), rate = node.priors[i,3], log = T);
			} else if (node.priors[i,2]== 0) {
				pp[i] <- dexp(fossils[i], rate = node.priors[i,3], log = T);
			}
		}


	## other prior types to be added here
	}

	return(pp)

}

.slater.nodeupdate <-
#node.update <-
function(node, model, node.states, node.priors, pwFossil) {


	node.number <- names(node.states[node]);
	if(is.null(node.number)) {
		 node.number <- node.priors[1,1];
	}
	if(!node.number %in% node.priors$node) {
		return(.slater.getproposal(node.states[node], psi =pwFossil))
	} else {
		prior.row <- which(node.priors$node == node.number);
		if(node.priors$prior.type[prior.row] == "uniform") {
			return(.slater.getproposal(node.states[node], psi =pwFossil, bound = T, min = node.priors[prior.row, 2], max = node.priors[prior.row, 3]));
		}
		if(node.priors$prior.type[prior.row] == "exp") {
			return(.slater.getproposal(node.states[node], psi =pwFossil, bound = T, min = node.priors[prior.row, 2], max = Inf));
		}
		if(node.priors$prior.type[prior.row] == "normal") {
			return(.slater.getproposal(node.states[node], psi =pwFossil))
		}
	}
}

.slater.updatewhichnode <-
#update.which.node <-
function(model, ngen, fossildata) {

	if(model == "SSP" | model == "Trend") {
		fossil.k <- 4 } else
	if(model == "OU"){
		fossil.k <- 5 }
	else {
		fossil.k <- 3;
		}

nfossil <- length(fossildata);

fossil.gen <- (ngen/fossil.k);

update.which.node <- fossil.gen %% nfossil;

if(update.which.node == 0) { update.which.node <- nfossil}

return(update.which.node);
}

.slater.updateacceptance <-
#updateAcceptance <-
function(k, acceptance, ngen) {

	if(k == 3) {
		if(ngen %% 3 == 1) acceptance[1] <- acceptance[1] + 1;
		if(ngen %% 3 == 2) acceptance[2] <- acceptance[2] + 1;
		if(ngen %% 3 == 0) acceptance[3] <- acceptance[3] + 1;

	} else if (k == 4) {
		if(ngen %% 4 == 1) acceptance[1] <- acceptance[1] + 1;
		if(ngen %% 4 == 2) acceptance[2] <- acceptance[2] + 1;
		if(ngen %% 4 == 3) acceptance[3] <- acceptance[3] + 1;
		if(ngen %% 4 == 0) acceptance[4] <- acceptance[4] + 1;

	}

	return(acceptance);
}

Try the geiger package in your browser

Any scripts or data that you put into this service are public.

geiger documentation built on April 4, 2023, 1:07 a.m.