R/somePairs.R

Defines functions somePairs

Documented in somePairs

#' Function reporting kernel causality results as a 7-column matrix.(deprecated)
#'
#' This function lets the user choose one of three criteria to determine causal direction
#' by setting \code{typ} as 1, 2 or 3.  This function reports results for 
#' only one criterion at a time unlike the function \code{some0Pairs} which
#' summarizes the resulting causal directions for all criteria with suitable weights.
#' If some variables are `control' variables, use \code{someCPairs}, C=control. 
#' 
#' (typ=1) reports ('Y', 'X', 'Cause',
#' 'SD1apd', 'SD2apd', 'SD3apd', 'SD4apd') nameing variables identifying 'cause'
#' and measures of stochastic dominance using absolute values of kernel
#' regression gradients comparing regresson of X on Y with that of Y on X.
#' 
#' {(typ=2)} 
#'  reports ('Y', 'X', 'Cause', 'SD1res', 'SD2res', 'SD3res', 'SD4res')
#'  and measures of stochastic dominance using absolute values of kernel
#'  regression residuals comparing regresson of X on Y with that of Y on X.
#' 
#' {(typ=3)} 
#' reports ('Y', 'X', 'Cause', 'r*X|Y', 'r*Y|X', 'r', 'p-val')
#' containing generalized correlation coefficients r*, 'r' refers to the
#' Pearson correlation coefficient and p-val column has the p-values for 
#' testing the significance of Pearson's 'r'.
#' @param mtx {The data matrix in the first column is paired with all others.}
#' @param dig {Number of digits for reporting (default \code{dig}=6).}
#' @param verbo {Make \code{verbo= TRUE} for printing detailed steps.}
#' @param typ {Must be 1 (default), 2 or 3 for the three criteria.}
#' @param rnam {Make \code{rnam= TRUE} if cleverly created rownames are desired.}
#' @return A matrix containing causal identification results for one criterion.
#' The first column of the input \code{mtx} having p columns
#' is paired with (p-1) other columns  The output matrix headings are
#' self-explanatory and distinct for each criterion Cr1 to Cr3.
#' 
#' @concept causal criteria
#' @concept generalized correlations
#'
#' @author Prof. H. D. Vinod, Economics Dept., Fordham University, NY
#' @seealso The related function \code{\link{some0Pairs}} may be more useful, since it
#' reports on all three criteria (by choosing typ=1,2,3) and
#' further summarizes their results by weighting to help choose causal paths. 
#' @references H. D. Vinod 'Generalized Correlation and Kernel Causality with
#'  Applications in Development Economics' in Communications in
#'  Statistics -Simulation and Computation, 2015,
#'  \doi{10.1080/03610918.2015.1122048}
#'
#'
#' @examples
#'
#' \dontrun{
#' data(mtcars)
#' somePairs(mtcars)
#' }
#' 
#' @export

somePairs <- function(mtx, dig = 6, verbo = FALSE, typ = 1, rnam = FALSE) {
    
    n = NROW(mtx)
    p = NCOL(mtx)
    rna = rep(NA, p)  #for storing row names
    print(c("n,p,digits", n, p, dig))
    if (typ == 1) 
        print("absolute apds compared")
    if (typ == 2) 
        print("absolute residuals compared")
    if (typ == 3) 
        print("r* compared")
    nam = colnames(mtx)
    npair = p - 1
    outcause = matrix(NA, nrow = npair, ncol = 7)
    ii = 0
    # following loop is such that i<=j, which means [i,j] will have sup-diagonal
    for (i in 2:p) {
        x0 = mtx[, i]  #i has x   or all other columns
        y0 = mtx[, 1]  #first col. has y  NOT x
        na2 = napair(x0, y0)
        x = na2$newx
        y = na2$newy
        print(c("i,non-missing", i, length(x)))
        ii = ii + 1
        print(c("i,ii", i, ii))
        rna[i] = paste("1", i, sep = ".")
        if (typ == 1) 
            arxy = abs_stdapd(x, y)
        if (typ == 1) 
            aryx = abs_stdapd(y, x)
        if (typ == 2) 
            arxy = abs_stdres(x, y)
        if (typ == 2) 
            aryx = abs_stdres(y, x)
        if (typ < 3) 
            {
                crit4 = comp_portfo2(arxy, aryx)
                if (verbo) 
                  print(crit4)
                round.crit4 = round(crit4, dig)
                
                outcause[ii, 4:7] = round.crit4
                outcause[ii, 1] = nam[1]
                outcause[ii, 2] = nam[i]
                outcause[ii, 3] = nam[i]  #i has x and x is the implicit cause
                if (crit4[1] > 0) 
                  outcause[ii, 3] = nam[1]  #SD1>0 then cause=y
            }  #endif typ<3
        if (typ == 3) 
            {
                rst = rstar(x, y)
                rxy = rst$corxy
                ryx = rst$coryx
                # print(c(rxy,ryx,ii,i))
                del = rxy^2 - ryx^2
                # del>0 means rxy>ryx or x on y good or cause=y
                outcause[ii, 4] = round(rst$corxy, dig)
                outcause[ii, 5] = round(rst$coryx, dig)
                outcause[ii, 6] = round(rst$pearson.r, dig)
                outcause[ii, 7] = round(rst$pv, dig)
                outcause[ii, 1] = nam[1]
                outcause[ii, 2] = nam[i]
                outcause[ii, 3] = nam[i]  #cause= Xi
                if (del > 0) 
                  outcause[ii, 3] = nam[1]  #cause=X1
            }  #endif typ==3
    }  #end of i loop
    namout = c("Y", "X", "Cause", "SD1", "SD2", "SD3", "SD4")
    colnames(outcause) = namout
    if (typ == 1) 
        namout = c("Y", "X", "Cause", "SD1apd", "SD2apd", "SD3apd", "SD4apd")
    if (typ == 2) 
        namout = c("Y", "X", "Cause", "SD1res", "SD2res", "SD3res", "SD4res")
    if (typ == 3) 
        namout = c("Y", "X", "Cause", "r*x|y", "r*y|x", "r", "p-val")
    # rownames(outcause)=rownames(out2)
    colnames(outcause) = namout
    if (rnam) 
        rownames(outcause) = rna[2:p]  #first row name slot=NA
    if (verbo) 
        print(outcause)

    return(outcause)
} 

Try the generalCorr package in your browser

Any scripts or data that you put into this service are public.

generalCorr documentation built on Oct. 10, 2023, 1:06 a.m.