Description Details Author(s) References See Also Examples
Description: Circular genomic permutation approach uses genome wide association studies (GWAS) results to establish the significance of pathway/gene-set associations whilst accounting for genomic structure. All single nucleotide polymorphisms (SNPs) in the GWAS are placed in a 'circular genome' according to their location. Then the complete set of SNP association p-values are permuted by rotation with respect to the SNPs' genomic locations. Two testing frameworks are available: permutations at the gene level, and permutations at the SNP level. The permutation at the gene level uses Fisher's combination test to calculate a single gene p-value, followed by the hypergeometric test. The SNP count methodology maps each SNP to pathways/gene-sets and calculates the proportion of SNPs for the real and the permutated datasets above a pre-defined threshold. Genomicper requires a matrix of GWAS association p-values and SNPs annotation to genes. Pathways can be obtained from within the package or can be provided by the user.
Package: | genomicper |
Type: | Package |
Version: | 1.7 |
Date: | 2020-05-06 |
License: | GPL-2 |
Claudia P. Cabrera, Pau Navarro, Chris S. Haley
Maintainer: Claudia Cabrera <c.cabrera@qmul.ac.uk>
SNP-level Permutations:
Genomicper: genome-wide association SNP-set analysis
Claudia P. Cabrera*, Pau Navarro*, Jennifer E. Huffman, Alan F. Wright, Caroline Hayward,Harry Campbell, James F. Wilson, Igor Rudan, Nicholas D. Hastie, Veronique Vitart, Chris S. Haley*
Gene-level Permutations:
Uncovering Networks from Genome-Wide Association Studies via
Circular Genomic Permutation. G3: Genes|Genomes|Genetics 2, 1067-1075.
Claudia P. Cabrera*, Pau Navarro*, Jennifer E. Huffman, Alan F. Wright, Caroline Hayward,Harry Campbell, James F. Wilson, Igor Rudan, Nicholas D. Hastie, Veronique Vitart, Chris S. Haley*
Genomicper functions:
1) read_pvals
,
2) genome_order
,
3) get_pathways
,
4) read2_paths
,
5A) snps_permutation
,
5B) genes_permutation
,
6) get_results
,
7) plot_results
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | #############################################################################
# Genomicper functions ##########
# 1) read_pvals(data_name="",snps_ann="")
# 2) genome_order(all_data="")
# 3) get_pathways(source="reactome",all_paths="",envir="")
# 4) read2_paths(ordered_alldata="",gs_locs="",sets_from="",sets_prefix="RHSA",level="")
# 5A) snps_permutation(ordered_alldata="",pers_ids="",ntraits="",nper="",saveto="",
# threshold="",gs_locs=gs_locs,envir = "")
# 5B) genes_permutation(ordered_alldata="",pers_ids="",pathways="",
# ntraits="",nper="",threshold="",saveto="",gs_locs=gs_locs,envir = "")
# 6) get_results(res_pattern="Permus",level="snp",from="workspace",
# threshold=0.05, envir = "")
# 7) plot_results(results = "", by = "", plot_all = TRUE, var = "", save_plot = TRUE,
# plot_name = "", bf = FALSE, save_qq = TRUE)
#############################################################################
############## DEMO: #######################################################
#### SNP-level #############################################################
# SNPs annotation and Pathways provided by user
# all data stored at the WORKSPACE
### Load files for analysis
data(demo,SNPsAnnotation)
# Read & format GWAS pvalues
all_data <- read_pvals(data_name=demo,snps_ann=SNPsAnnotation)
# Order data according to the genome
genome_results <-genome_order(all_data=all_data)
# Results from genome_order
ordered_alldata <- genome_results$ordered_alldata
gs_locs <- genome_results$gs_locs
# Create new environment to save variables (e.g. pathways, permutations):
gper.env <- new.env()
# Pathways can be downloaded using the function get_pathways()
# Load example pathways into the new environment.
data(RHSA164843,RHSA446343,RHSA8876384,RHSA8964572,RHSA109582,RHSA1474244,envir=gper.env)
# Map SNPs to pathways
paths_res <- read2_paths(ordered_alldata=ordered_alldata,
gs_locs=gs_locs,sets_from="workspace",sets_prefix="RHSA",
level="snp",envir=gper.env)
# Results from read2_paths:
pers_ids <- paths_res$per_ors
pathways<- paths_res$pathways
# Perform permutations:
snps_permutation(ordered_alldata=ordered_alldata,
pers_ids=pers_ids,ntraits=c(7:13),nper=10,saveto="workspace",
threshold=0.05,gs_locs=gs_locs,envir = gper.env)
# Get results
results <- get_results(res_pattern="Permus",level="snp",
from="workspace",threshold=0.05,envir = gper.env)
# Plot results
## Not run:
#saves plots to working directory
qq <- plot_results(results=results,by="set",plot_all=TRUE)
qq <- plot_results(results=results,by="trait",
plot_all=FALSE,var="trait1")
# Displays interactive plot. Select a trait/set to plot and
# set arguments save_plot=FALSE, plot_all = FALSE
# IMPORTANT: to EXIT interactive plot, RIGHT CLICK on the
# plot and STOP.
qq <- plot_results(results=results,by="set",plot_all=FALSE,
var="RHSA109582",save_plot=FALSE)
## End(Not run)
# -- END OF DEMO
###############################################
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.