Nothing
#' Comparisons of Phylogenetic Signal Effect Sizes
#'
#' Function performs an analysis to compare the effect sizes of two or more phylogenetic effect sizes
#'
#' The function statistically compares the effect sizes of two or more \code{\link{physignal.z}} analyses.
#' This can be performed on different traits from the same tree, same or different traits from different
#' trees, or modules of landmark configurations.
#'
#' To use this function, perform \code{\link{physignal.z}} on as many samples as desired.
#' Any number of objects of class physignal.z can be input. Note that some values of Z can be NaN,
#' if the scaling parameter, lambda, is optimized at 0. In these cases, the standard error is also 0,
#' and pairwise comparisons might not make sense.
#'
#'
#' @param ... saved analyses of class physignal.z
#' @param two.tailed A logical value to indicate whether a two-tailed test (typical and default) should be performed.
#' @keywords analysis
#' @export
#' @author Michael Collyer
#' @return An object of class compare.physignal.z, returns a list of the following
#' \item{sample.z}{A vector of effect sizes for each sample.}
#' \item{sample.r.sd}{A vector of standard deviations for each sampling distribution (following Box-Cox transformation).}
#' \item{pairwise.z}{A matrix of pairwise, two-sample z scores between all pairs of effect sizes.}
#' \item{pairwise.p}{A matrix of corresponding P-values.}
#' @references Collyer, M.L., E.K. Baken, & D.C. Adams. 2022. A standardized effect size for evaluating
#' and comparing the strength of phylogenetic signal. Methods in Ecology and Evolution. 13:367-382.
#' @examples
#' \dontrun{
#'
#' # Example: Compare phylogenetic signal of head components in Plethodon
#'
#' data(plethspecies)
#' Y.gpa <- gpagen(plethspecies$land) #GPA-alignment
#'
#' ## landmarks of the jaw and cranium
#' jaw <- 1:5
#' cranium <- 6:11
#'
#' PS.jaw <- physignal.z(A = Y.gpa$coords[jaw,,], phy = plethspecies$phy,
#' lambda = "front", PAC.no = 7, iter=999)
#'
#' PS.cranium <- physignal.z(A = Y.gpa$coords[cranium,,], phy = plethspecies$phy,
#' lambda = "front", PAC.no = 7, iter=999)
#'
#' PS.list <-list(PS.jaw, PS.cranium)
#' names(PS.list) <- c("jaw", "cranium")
#'
#' PS.Z <- compare.physignal.z(PS.list)
#' summary(PS.Z)
#' }
compare.physignal.z <- function(..., two.tailed = TRUE){
dots <- list(...)
tails <- if(two.tailed) 2 else 1
if(length(dots) == 1) n <- length(dots[[1]]) else n <- length(dots)
if(n == 1) stop("At least two objects of class physignal.z are needed")
if(length(dots) == 1) {
list.names <- names(dots[[1]])
dots <- lapply(1:n, function(j) dots[[1]][[j]])
names(dots) <- list.names
} else list.names <- names(dots)
if(length(dots) < 2) stop("At least two objects of class pls are needed")
is.psz <- function(x) inherits(x, "physignal.z")
sdn <- function(x) sqrt(sum((x-mean(x))^2)/length(x))
list.check <- sapply(1:length(dots), function(j) any(is.psz(dots[[j]])))
if(any(!list.check)) stop("Not all objects are class pls")
k <- length(list.check)
if(is.null(list.names)) list.names <- as.list(substitute(list(...)))[-1L]
k.combn <- combn(k,2)
defW <- getOption("warn")
options(warn = -1)
bct <- lapply(dots, function(x) {
s <- sd(x$rand.logL)
res <- if(s > 0) box.cox(x$rand.logL)$transformed else
rep(0, length(x$rand.logL))
})
list.drs <- sapply(1:k, function(j) bct[[j]][1] - mean(bct[[j]]))
list.sds <- sapply(1:k, function(j) sdn(bct[[j]]))
list.zs <- sapply(1:k, function(j) effect.size(dots[[j]]$rand.logL, center=TRUE))
options(warn = defW)
z12 <- sapply(1:ncol(k.combn), function(j){
a <- k.combn[1,j]; b <- k.combn[2,j]
r1 <- list.drs[a]; r2 <- list.drs[b]
sd1 <- list.sds[a]; sd2 <- list.sds[b]
denom <- sqrt(sd1^2+sd2^2)
res <- if (denom > 0) (r1-r2)/denom else 0
})
z12.p <- sapply(1:length(z12), function(j)
pnorm(abs(z12[[j]]), lower.tail = FALSE) * tails)
d <- rep(0,k); names(d) <- list.names
D <-dist(d)
z12.pw <- p12.pw <- D
for(i in 1:length(z12)) z12.pw[i] <-z12[i]
for(i in 1:length(z12)) p12.pw[i] <-z12.p[i]
names(list.zs) <- names(list.sds) <-list.names
pairwise.z <- as.matrix(z12.pw)
pairwise.P <- as.matrix(p12.pw)
diag(pairwise.P) <- 1
out <- list(sample.z = list.zs,
sample.logL.sd = list.sds,
pairwise.z = abs(pairwise.z),
pairwise.P = pairwise.P)
class(out) <- "compare.physignal.z"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.