R/compare.pls.r

Defines functions compare.pls

Documented in compare.pls

#' Comparisons of Effect Sizes from Partial Least Squares
#'
#' Function performs an analysis to compare the effect sizes of two or more PLS effects
#'
#' The function statistically compares the effect sizes of two or more PLS analyses.  Typically, this
#' function might be used to compare levels of integration between two or more samples, each measuring morphological 
#' integration between different modules.  In such cases, the PLS correlation coefficient, r, is not a good
#' measure of integration effect, as its expected value is dependent on both the number of specimens and number 
#' of variables (Adams and Collyer 2016).  This analysis calculates effect sizes as standard deviates, z, and 
#' performs two-sample z-tests, using the pooled standard error from the sampling distributions of the PLS analyses.
#'  
#' To use this function, perform \code{\link{two.b.pls}}, \code{\link{integration.test}}, or 
#'  \code{\link{phylo.integration}} on as many samples as desired.  Any number of objects of class pls can be input.
#'  
#'  Similar versions of this function will be designed for alternative test statistics, in the future. 
#' 
#'  \subsection{Notes for geomorph 3.0.4 and subsequent versions}{ 
#'  Compared to previous versions of geomorph, users might notice differences in effect sizes.  Previous versions used z-scores calculated with 
#'  expected values of statistics from null hypotheses (sensu Collyer et al. 2015); however Adams and Collyer (2016) showed that expected values 
#'  for some statistics can vary with sample size and variable number, and recommended finding the expected value, empirically, as the mean from the set 
#'  of random outcomes.  Geomorph 3.0.4 and subsequent versions now center z-scores on their empirically estimated expected values and where appropriate, 
#'  log-transform values to assure statistics are normally distributed.  This can result in negative effect sizes, when statistics are smaller than 
#'  expected compared to the average random outcome.  For ANOVA-based functions, the option to choose among different statistics to measure effect size 
#'  is now a function argument.
#' }
#' 
#' @param ... saved analyses of class pls
#' @param two.tailed A logical value to indicate whether a two-tailed test (typical and default) should be performed.
#' @keywords analysis
#' @export
#' @author Michael Collyer
#' @return An object of class compare.pls, returns a list of the following
#' \item{sample.z}{A vector of effect sizes for each sample.}
#' \item{sample.r.sd}{A vector of standard deviations for each sampling distribution (following Box-Cox transformation).}
#' \item{pairwise.z}{A matrix of pairwise, two-sample z scores between all pairs of effect sizes.}
#' \item{pairwise.p}{A matrix of corresponding P-values.}
#' @references Collyer, M.L., D.J. Sekora, and D.C. Adams. 2015. A method for analysis of phenotypic change for phenotypes described 
#' by high-dimensional data. Heredity. 115:357-365.
#' @references Adams, D.C. and M.L. Collyer. 2016.  On the comparison of the strength of morphological integration across morphometric 
#' datasets. Evolution. 70:2623-2631.
#' @examples
#' \dontrun{
#' # Example of comparative morphological integration between pupfish head 
#' # and body shapes
#' 
#'  data(pupfish) # GPA previously performed
#'   
#'  group <- factor(paste(pupfish$Pop, pupfish$Sex, sep = "."))
#'  levels(group)
#'   
#'  tail.LM <- c(1:3, 5:9, 18:38)
#'  head.LM <- (1:56)[-tail.LM]
#' 
#'  tail.coords <- pupfish$coords[tail.LM,,]
#'  head.coords <- pupfish$coords[head.LM,,]
#'  
#'  # Subset 3D array by group, returning a list of 3D arrays
#'  tail.coords.gp <- coords.subset(tail.coords, group)
#'  head.coords.gp <- coords.subset(head.coords, group)
#' 
#'  integ.tests <- Map(function(x,y) integration.test(x, y, iter=499, 
#'  print.progress = FALSE), head.coords.gp, tail.coords.gp)
#'	# the map function performs the integration test on each 3D array in 
#'	# the lists provided
#' 
#'  integ.tests$Marsh.F
#'  integ.tests$Marsh.M
#'  integ.tests$Sinkhole.F
#'  integ.tests$Sinkhole.M
#' 
#'  group.Z <- compare.pls(integ.tests)
#'  summary(group.Z)
#' 
#'  # Sexual dimorphism in morphological integration in one population
#'  # but not the other
#' 
#'  # can also list different PLS analyses, separately
#' 
#'  compare.pls(MF = integ.tests$Marsh.F, MM = integ.tests$Marsh.M)
#' }
 compare.pls <- function(..., two.tailed = TRUE){
   dots <- list(...)
   tails <- if(two.tailed) 2 else 1
   if(length(dots) == 1) n <- length(dots[[1]]) else n <- length(dots)
   if(n == 1) stop("At least two objects of class pls are needed")
   if(length(dots) == 1) {
     list.names <- names(dots[[1]]) 
     dots <- lapply(1:n, function(j) dots[[1]][[j]])
     names(dots) <- list.names
     } else list.names <- names(dots)
   if(length(dots) < 2) stop("At least two objects of class pls are needed")
   is.pls <- function(x) inherits(x, "pls")
   sdn <- function(x) sqrt(sum((x-mean(x))^2)/length(x))
   list.check <- sapply(1:length(dots), function(j) any(is.pls(dots[[j]])))
   if(any(list.check == FALSE)) stop("Not all objects are class pls")
   k <- length(list.check)
   if(is.null(list.names)) list.names <- as.list(substitute(list(...)))[-1L]
   k.combn <- combn(k,2)
   bct <- lapply(dots, function(x) box.cox(x$random.r)$transformed)
   list.drs <- sapply(1:k, function(j) bct[[j]][1] - mean(bct[[j]])) 
   list.sds <- sapply(1:k, function(j) sdn(bct[[j]]))
   list.zs <- sapply(1:k, function(j) effect.size(dots[[j]]$random.r, center=TRUE))

   z12 <- sapply(1:ncol(k.combn), function(j){
     a <- k.combn[1,j]; b <- k.combn[2,j]
     r1 <- list.drs[a]; r2 <- list.drs[b] 
     sd1 <- list.sds[a]; sd2 <- list.sds[b]
     (r1-r2)/sqrt(sd1^2+sd2^2)
   })
   z12.p <- sapply(1:length(z12), function(j) pnorm(abs(z12[[j]]), lower.tail = FALSE) * tails)
   d <- rep(0,k); names(d) <- list.names
   D <-dist(d)
   z12.pw <- p12.pw <- D
   for(i in 1:length(z12)) z12.pw[i] <-z12[i]
   for(i in 1:length(z12)) p12.pw[i] <-z12.p[i]
   names(list.zs) <- names(list.sds) <-list.names
   pairwise.z <- as.matrix(z12.pw)
   pairwise.P <- as.matrix(p12.pw)
   diag(pairwise.P) <- 1
   
   out <- list(sample.z = list.zs,
               sample.r.sd = list.sds,
               pairwise.z = abs(pairwise.z),
               pairwise.P = pairwise.P)
   class(out) <- "compare.pls"
   out
 }
 

Try the geomorph package in your browser

Any scripts or data that you put into this service are public.

geomorph documentation built on June 24, 2024, 5:07 p.m.