Nothing
####**********************************************************************
####**********************************************************************
####
#### ----------------------------------------------------------------
#### Written by:
#### John Ehrlinger, Ph.D.
####
#### email: john.ehrlinger@gmail.com
#### URL: https://github.com/ehrlinger/ggRandomForests
#### ----------------------------------------------------------------
####
####**********************************************************************
####**********************************************************************
###############################################################################
# Package documentation
###############################################################################
#' @title ggRandomForests: Visually Exploring Random Forests
#'
#' @description \code{ggRandomForests} is a utility package for
#' \code{randomForestSRC} (Ishwaran et.al. 2014, 2008, 2007) for survival,
#' regression and classification forests and uses the \code{ggplot2}
#' (Wickham 2009) package for plotting results. \code{ggRandomForests} is
#' structured to extract data objects from the random forest and provides S3
#' functions for printing and plotting these objects.
#'
#' The \code{randomForestSRC} package provides a unified treatment of
#' Breiman's (2001) random forests for a variety of data settings. Regression
#' and classification forests are grown when the response is numeric or
#' categorical (factor) while survival and competing risk forests
#' (Ishwaran et al. 2008, 2012) are grown for right-censored survival data.
#'
#' Many of the figures created by the \code{ggRandomForests} package are also
#' available directly from within the \code{randomForestSRC} package. However,
#' \code{ggRandomForests} offers the following advantages:
#' \itemize{
#' \item Separation of data and figures: \code{ggRandomForest} contains
#' functions that operate on either the \code{\link[randomForestSRC]{rfsrc}}
#' forest object directly, or on the output from \code{randomForestSRC} post
#' processing functions (i.e. \code{plot.variable}, \code{var.select},
#' \code{find.interaction}) to generate intermediate \code{ggRandomForests}
#' data objects. S3 functions are provide to further process these objects and
#' plot results using the \code{ggplot2} graphics package. Alternatively,
#' users can use these data objects for additional custom plotting or
#' analysis operations.
#'
#' \item Each data object/figure is a single, self contained object. This
#' allows simple modification and manipulation of the data or \code{ggplot2}
#' objects to meet users specific needs and requirements.
#'
#' \item The use of \code{ggplot2} for plotting. We chose to use the
#' \code{ggplot2} package for our figures to allow users flexibility in
#' modifying the figures to their liking. Each S3 plot function returns either
#' a single \code{ggplot2} object, or a \code{list} of \code{ggplot2} objects,
#' allowing users to use additional \code{ggplot2} functions or themes to
#' modify and customize the figures to their liking.
#' }
#'
#' The \code{ggRandomForests} package contains the following data functions:
#' \itemize{
#' \item \code{\link{gg_rfsrc}}: randomForest[SRC] predictions.
#' \item \code{\link{gg_error}}: randomForest[SRC] convergence rate based on
#' the OOB error rate.
#' \item \code{\link{gg_roc}}: ROC curves for randomForest classification
#' models.
#' \item \code{\link{gg_vimp}}: Variable Importance ranking for variable
#' selection.
#' \item \code{\link{gg_minimal_depth}}: Minimal Depth ranking for variable
#' selection
#' (Ishwaran et.al. 2010).
#' \item \code{\link{gg_minimal_vimp}}: Comparing Minimal Depth and VIMP
#' rankings for variable selection.
#' \item \code{\link{gg_interaction}}: Minimal Depth interaction detection
#' (Ishwaran et.al. 2010)
#' \item \code{\link{gg_variable}}: Marginal variable dependence.
#' \item \code{\link{gg_partial}}: Partial (risk adjusted) variable
#' dependence.
#' \item \code{\link{gg_partial_coplot}}: Partial variable conditional
#' dependence (computationally expensive).
#' \item \code{\link{gg_survival}}: Kaplan-Meier/Nelson-Aalen hazard analysis.
#' }
#'
#' Each of these data functions has an associated S3 plot function that
#' returns \code{ggplot2} objects, either individually or as a list, which can
#' be further customized using standard \code{ggplot2} commands.
#'
#' @references
#' Breiman, L. (2001). Random forests, Machine Learning, 45:5-32.
#'
#' Ishwaran H. and Kogalur U.B. (2014). Random Forests for Survival,
#' Regression and Classification (RF-SRC), R package version 1.5.5.12.
#'
#' Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R. R News
#' 7(2), 25--31.
#'
#' Ishwaran H., Kogalur U.B., Blackstone E.H. and Lauer M.S. (2008). Random
#' survival forests. Ann. Appl. Statist. 2(3), 841--860.
#'
#' Ishwaran, H., U. B. Kogalur, E. Z. Gorodeski, A. J. Minn, and M. S. Lauer
#' (2010). High-dimensional variable selection for survival data. J. Amer.
#' Statist. Assoc. 105, 205-217.
#'
#' Ishwaran, H. (2007). Variable importance in binary regression trees and
#' forests. Electronic J. Statist., 1, 519-537.
#'
#' Wickham, H. ggplot2: elegant graphics for data analysis. Springer New York,
#' 2009.
#'
#' @docType package
#' @name ggRandomForests-package
#'
################
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.