Nothing
#' @param variable_labels Logical, if `TRUE` variable labels are used as column
#' headers. If `FALSE`, variable names are used.
#' @param value_labels Logical, if `TRUE`, value labels are used as values in
#' the table output. If `FALSE`, the numeric values or factor levels are used.
#' @param row_header_separator Character, separator between the different
#' subgroups in the table output.
#' @param collapse_ci Logical, if `TRUE`, the columns with predicted values and
#' confidence intervals are collapsed into one column, e.g. `Predicted (95% CI)`.
#' @param collapse_p Logical, if `TRUE`, the columns with predicted values and
#' p-values are collapsed into one column, where significant p-values are
#' indicated as asterisks.
#' @param combine_levels Logical, if `TRUE`, the levels of the first comparison
#' of each focal term against the second are combined into one column. This is
#' useful when comparing multiple focal terms, e.g. `education = low-high` and
#' `gender = male-female` are combined into `first = low-male` and
#' `second = high-female`.
#' @param n Number of rows to print per subgroup. If `NULL`, a default number
#' of rows is printed, depending on the number of subgroups.
#' @param collapse_tables Logical, if `TRUE`, all tables are combined into one.
#' The tables are not split by further focal terms, but rather are added as
#' columns. Only works when there is more than one focal term.
#'
#' @rdname print
#' @export
format.ggeffects <- function(x,
variable_labels = FALSE,
value_labels = FALSE,
group_name = FALSE,
row_header_separator = ", ",
digits = 2,
collapse_ci = FALSE,
collapse_tables = FALSE,
n,
...) {
# we need to determine how many rows to print. this requires the original
# data frame including attributes, that's why this code comes first
nrow_to_print <- .nrows_to_print(x, n)
focal_terms <- attributes(x)$terms
ci_level <- attributes(x)$ci.lvl
response_name <- attributes(x)$response.name
# default name, used later
if (is.null(response_name)) {
response_name <- "Response Level"
}
# fix terms for survival models
a1 <- attr(x, "fitfun", exact = TRUE)
a2 <- attr(x, "y.title", exact = TRUE)
if (!is.null(a1) && !is.null(a2) && a1 == "coxph" && a2 != "Risk Score" && !"time" %in% focal_terms) {
focal_terms <- c("time", focal_terms)
}
# format confidence intervals
dots <- list(...)
if (is.null(dots$ci_brackets)) {
dots$ci_brackets <- getOption("ggeffects_ci_brackets", c("", ""))
}
# set default for collapse_ci and collapse_tables
collapse_ci <- getOption("ggeffects_collapse_ci", collapse_ci)
collapse_tables <- getOption("ggeffects_collapse_tables", collapse_tables)
# use value labels as values for focal term
if (isTRUE(value_labels)) {
labs <- get_x_labels(x, case = NULL)
vals <- x$x
if (!is.null(labs)) {
x$x <- format(labs)
labs <- format(sprintf("[%g]", vals))
x$x <- paste(labs, x$x)
}
}
# use variable labels or variable names as column header?
if (isTRUE(variable_labels)) {
x_label <- attributes(x)$x.title
predicted_label <- attributes(x)$title
} else {
x_label <- focal_terms[1]
predicted_label <- "Predicted"
}
# check if we have groups, facets, panels or response levels
has_groups <- .obj_has_name(x, "group") && length(unique(x$group)) > 1
has_facets <- .obj_has_name(x, "facet") && length(unique(x$facet)) > 1
has_panel <- .obj_has_name(x, "panel") && length(unique(x$panel)) > 1
has_response <- .obj_has_name(x, "response.level") && length(unique(x$response.level)) > 1
# check which columns we have - we want to sort by "subgroups"
sort_columns <- c("response.level", "group", "facet", "panel")[c(has_response, has_groups, has_facets, has_panel)]
# response needs to be factor
if (has_response) {
x$response.level <- factor(x$response.level, levels = unique(x$response.level))
}
if (length(sort_columns)) {
insight::check_if_installed("datawizard")
x <- datawizard::data_arrange(x, sort_columns)
}
# format column names, to make it work with insight-formatting-functions
x$CI <- ifelse(is.null(ci_level), 95, ci_level)
colnames(x)[colnames(x) == "conf.low"] <- "CI_low"
colnames(x)[colnames(x) == "conf.high"] <- "CI_high"
# sanity check - if we don't have CI columns, remove CI level as well
if (!any(c("CI_low", "CI_high") %in% colnames(x))) {
x$CI <- NULL
}
# round numeric values and format data frame
x$x <- insight::format_value(
x$x,
digits = digits,
protect_integers = TRUE,
...
)
ft_args <- list(
x,
zap_small = TRUE,
digits = digits,
ci_digits = digits
)
x <- do.call(insight::format_table, c(ft_args, dots))
x$std.error <- NULL
row_header_labels <- NULL
# when we have multiple focal terms, we create proper subheadings here
if (length(sort_columns)) {
# add variable name to group levels?
if (isTRUE(group_name) && isFALSE(collapse_tables)) {
for (i in sort_columns) {
prefix <- switch(
i,
response.level = response_name,
group = ifelse(length(focal_terms) > 1, focal_terms[2], ""),
facet = ifelse(length(focal_terms) > 2, focal_terms[3], ""),
panel = ifelse(length(focal_terms) > 3, focal_terms[4], ""),
""
)
x[[i]] <- paste(prefix, x[[i]], sep = ": ")
}
}
# create labels, based on values from the different sort-columns ("subgroups")
row_header_labels <- apply(x[sort_columns], 1, paste, collapse = row_header_separator)
}
colnames(x)[1] <- x_label
colnames(x)[2] <- predicted_label
x$groups <- row_header_labels
# clean-up for subset data frames, e.g. ggeffects[c(1:2, 4:6)]
invalid_rows <- !nzchar(x$Predicted)
if (any(invalid_rows)) {
x <- x[!invalid_rows, ]
}
# split by groups
if (is.null(x$groups) || length(unique(x$groups)) <= 1) {
x <- x[.get_sample_rows(x, n = nrow_to_print), , drop = FALSE]
} else {
# coerce to factor, so that `split()` preserves correct order
f <- factor(x$groups, levels = unique(x$groups))
# split by groups, apply row selection (filtering), and combine data frame
tmp <- lapply(split(x, f), function(i) {
i[.get_sample_rows(i, n = nrow_to_print), , drop = FALSE]
})
# create data frame w/o rownames
x <- as.data.frame(do.call(rbind, tmp))
# if user wants just one table, we need to preserve the group, facet and
# panel columns, but rename those to the name of the respective focal terms
if (isTRUE(collapse_tables)) {
insight::check_if_installed("datawizard")
# first focal term is main term, we don't want to touch it here
focal_terms <- focal_terms[-1]
# if we have ordinal models and alike, we have a response level, which
# we need to include as first value of "focal_terms"
if (has_response) {
focal_terms <- c(response_name, focal_terms)
}
x <- datawizard::data_rename(x, sort_columns, focal_terms)
x <- datawizard::data_relocate(x, focal_terms, after = 1)
# we need to remove "groups", else table will be separated again
x$groups <- NULL
# remove repeating elements in focal term columns
for (i in focal_terms) {
for (j in nrow(x):2) {
if (x[[i]][j] == x[[i]][j - 1]) x[[i]][j] <- ""
}
}
}
}
# clean-up
x[c("response.level", "group", "facet", "panel")] <- NULL
# collapse CI?
x <- .collapse_ci(x, collapse_ci, ci_brackets = dots$ci_brackets)
rownames(x) <- NULL
x
}
#' @rdname print
#' @export
format.ggcomparisons <- function(x,
collapse_ci = FALSE,
collapse_p = FALSE,
combine_levels = FALSE,
...) {
ci <- attributes(x)$ci_level
by_factor <- attributes(x)$by_factor
estimate_name <- attributes(x)$estimate_name
datagrid <- attributes(x)$datagrid
out <- insight::standardize_names(x)
attr(out, "ci") <- ci
# format confidence intervals
dots <- list(...)
if (is.null(dots$ci_brackets)) {
dots$ci_brackets <- getOption("ggeffects_ci_brackets", c("", ""))
}
# zap small values by default
if (is.null(dots$zap_small)) {
dots$zap_small <- TRUE
}
# set default for collapse_ci
collapse_ci <- getOption("ggeffects_collapse_ci", collapse_ci)
# set default for collapse_p
collapse_p <- getOption("ggeffects_collapse_p", collapse_p)
out <- do.call(insight::format_table, c(list(out), dots))
# collapse p?
out <- .collapse_p(out, collapse_p)
# collapse CI?
out <- .collapse_ci(out, collapse_ci, ci_brackets = dots$ci_brackets)
# mix levels and re-combine?
out <- .combine_level_pairs(out, combine_levels, datagrid, estimate_name, by_factor)
out
}
# helper ----------------------------------------------------------------------
# helper to re-arrange column values. Each column no longer represents pairs of
# the same focal term, but the levels of the first comparison of each focal
# term against the second. e.g. instead "education = low-high" and
# "sex = male-female", it will become "first = low-male" and "second = high-female"
.combine_level_pairs <- function(x, combine_levels, datagrid, estimate_name, by_factor = NULL) {
if (!combine_levels) {
return(x)
}
insight::check_if_installed("datawizard")
# retrieve columns that represent focal terms, but exclude group-by variable
focal_terms <- colnames(x)[1:(which(colnames(x) == estimate_name) - 1)]
focal_terms <- setdiff(focal_terms, by_factor)
# check if some of the levels contain a hyphen, which is used to separate
# the levels of the first and second comparison. If so, we need to temporatily
# replace the hyphen with another character, so that we can split the levels
needs_preparation <- focal_terms[vapply(datagrid[focal_terms], function(i) {
any(grepl("-", i, fixed = TRUE))
}, logical(1))]
if (length(needs_preparation)) {
for (i in needs_preparation) {
unique_values <- as.character(unique(datagrid[[i]]))
for (j in unique_values) {
j_new <- gsub("-", "#_#", j, fixed = TRUE)
x[[i]] <- gsub(j, j_new, x[[i]], fixed = TRUE)
}
}
}
# separate columns, so we have one column for each level of the focal terms
out <- datawizard::data_separate(
x,
focal_terms,
guess_columns = "mode",
separator = "-",
append = FALSE
)
# check if we need to replace special characters back to hyphens
if (length(needs_preparation)) {
for (i in needs_preparation) {
# if yes, we need to find the new columnsm which are no longer named
# "a" or "b", but "a_1", "a_2" etc.
split_columns <- grep(paste0(i, "_", "\\d"), colnames(out), value = TRUE)
for (j in split_columns) {
# add back hypen
out[[j]] <- gsub("#_#", "-", out[[j]], fixed = TRUE)
}
}
}
# unite split columns again. we need to do this for each split-part separately
split_parts <- unique(gsub("(.*)_(\\d)", "\\2", grep("_\\d$", colnames(out), value = TRUE)))
for (i in split_parts) {
# find columns that belong to the same focal term
unite_columns <- grep(
paste0("(", paste(focal_terms, collapse = "|"), ")_", i),
colnames(out),
value = TRUE
)
out <- datawizard::data_relocate(
datawizard::data_unite(
out,
select = unite_columns,
new_column = paste("Pair", i),
append = FALSE,
separator = "-"
),
select = "^Pair",
regex = TRUE
)
}
# finished...
out
}
.collapse_ci <- function(x, collapse_ci, ci_brackets) {
# collapse CI?
ci_column <- grep("\\d{2}% CI", colnames(x))
if (collapse_ci && length(ci_column)) {
# make sure we don't replace with empty string
if (!any(nzchar(ci_brackets))) {
ci_brackets <- c("(", ")")
}
# remove brackets/parentheses
x[, ci_column] <- gsub("(\\(|\\)|\\[|\\])", "", x[, ci_column])
x[, ci_column] <- format(paste0(ci_brackets[1], trimws(x[, ci_column]), ci_brackets[2]), justify = "right")
# paste CI to predicted values
x[, ci_column - 1] <- paste0(x[, ci_column - 1], " ", x[, ci_column])
# reassign column name
colnames(x)[ci_column - 1] <- paste0(colnames(x)[ci_column - 1], " (", colnames(x)[ci_column], ")")
# remove CI column
x[, ci_column] <- NULL
}
x
}
.collapse_p <- function(x, collapse_p) {
# collapse p?
p_column <- which(colnames(x) == "p")
if (collapse_p && length(p_column)) {
# find CI column - we may insert p-values before that column. If we don't
# have CI columns, e.g. because user also used "collapse_ci = TRUE", we
# simply put it before estimated values
ci_column <- grep("\\d{2}% CI", colnames(x))
if (length(ci_column)) {
insert_column <- ci_column - 1
} else {
insert_column <- p_column - 1
}
# make sure "< .001" is correctly handled
x$p[x$p == "< .001"] <- "0.0001"
# format p-values, we only want significance stars
p_values <- format(insight::format_p(as.numeric(x$p), stars = TRUE, stars_only = TRUE))
# paste po-values to predicted values
x[, insert_column] <- paste0(x[, insert_column], p_values)
# remove p column
x[p_column] <- NULL
}
x
}
.nrows_to_print <- function(x, n) {
# if we have groups, show n rows per group
.n <- 1
# remember if we have a factor
x_is_factor <- identical(attr(x, "x.is.factor"), "1") && is.factor(x$x)
# we do not simply count rows, but rather the number of combinations
# when we have facets / groups / response.levels. These are separated
# with own heading, making the output probably too long. Thus, we
# decide on how many rows per "subheading" to be printed also based on
# the number of combinations of groups, facets and response level
has_groups <- .obj_has_name(x, "group") && length(unique(x$group)) > 1
has_facets <- .obj_has_name(x, "facet") && length(unique(x$facet)) > 1
has_panel <- .obj_has_name(x, "panel") && length(unique(x$panel)) > 1
has_response <- .obj_has_name(x, "response.level") && length(unique(x$response.level)) > 1
# here comes the top-secret formula that calculates the perfect number of rows
if (has_groups) {
.n <- .n_distinct(x$group)
}
if (has_facets) {
.n <- .n * .n_distinct(x$facet)
}
if (has_panel) {
.n <- .n * .n_distinct(x$panel)
}
if (has_response) {
.n <- .n * .n_distinct(x$response.level)
}
# make sure that by default not too many rows are printed. The larger ".n" is
# (i.e. the more subheadings we have, see code above), the fewer rows we want
# per subheading. For factors, however, we want to show all levels
if (missing(n) && !x_is_factor) {
n <- if (.n >= 6) {
4
} else if (.n >= 4 && .n < 6) {
5
} else if (.n >= 2 && .n < 4) {
6
} else {
8
}
} else if (x_is_factor) {
n <- Inf
}
n
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.