R/grpnet.default.R

Defines functions grpnet.default

Documented in grpnet.default

# Some code (for arguments and outputs) is re-purposed from the R package
# "glmnet" (Hastie et al., 2010) https://cran.r-project.org/package=glmnet

grpnet.default <-
  function(x,
           y,
           group,
           family = c("gaussian", "binomial", "multinomial", "poisson", 
                      "negative.binomial", "Gamma", "inverse.gaussian"),
           weights = NULL,
           offset = NULL,
           alpha = 1,
           nlambda = 100,
           lambda.min.ratio = ifelse(nobs < nvars, 0.05, 0.0001),
           lambda = NULL,
           penalty.factor = NULL,
           penalty = c("LASSO", "MCP", "SCAD"),
           gamma = 4,
           theta = 1,
           standardized = !orthogonalized,
           orthogonalized = TRUE,
           intercept = TRUE,
           thresh = 1e-04,
           maxit = 1e05,
           proglang = c("Fortran", "R"),
           ...){
    # group elastic net regularized regression (default)
    # Nathaniel E. Helwig (helwig@umn.edu)
    # Updated: 2024-07-10
    
    
    ######***######   INITIAL CHECKS   ######***######
    
    ### start clock
    tic <- proc.time()[3]
    
    ### get call
    grpnet.call <- match.call()
    
    ### check x and y
    x <- as.matrix(x) + 0.0
    nobs <- nrow(x)
    nvars <- ncol(x)
    ny <- if(is.matrix(y)) nrow(y) else length(y)
    if(ny != nobs) stop("Inputs 'x' and 'y' must satisfy:\nnrow(x) == length(y)  or  nrow(x) == nrow(y)")
    
    ### x names
    xnames <- colnames(x)
    if(is.null(xnames)) xnames <- paste0("x", 1:nvars)
    
    ### check group
    if(missing(group)) {
      group <- ingroup <- 1:nvars
      gsize <- rep(1L, nvars)
      names(gsize) <- 1:nvars
      ngrps <- nvars
    } else {
      if(length(group) != nvars) stop("Inputs 'x' and 'group' must satisfy:  ncol(x) == length(group)")
      ingroup <- group
      group <- as.factor(group)
      ngrps <- nlevels(group)
      if(ngrps > nvars) stop("Inputs 'x' and 'group' must satisfy:  ncol(x) >= nlevels(group)")
      gsize <- table(group)
      group <- as.integer(group)
    }
    gnames <- names(gsize)
    
    ### check family
    family <- pmatch(as.character(family[1]), c("gaussian", "binomial", "multinomial", "poisson", "negative.binomial", "Gamma", "inverse.gaussian"))
    if(is.na(family)) stop("'family' not recognized")
    family <- c("gaussian", "binomial", "multinomial", "poisson", "negative.binomial", "Gamma", "inverse.gaussian")[family]
    family <- family.grpnet(family, theta)
    
    ### check weights
    if(is.null(weights)){
      noweights = TRUE
      weights <- wsqrt <- rep(1.0, nobs)
    } else {
      noweights = FALSE
      weights <- as.numeric(weights)
      if(length(weights) != nobs) stop("Inputs 'y' and 'weights' must satisfy:  length(y) == length(weights)")
      if(any(weights < 0)) stop("Input 'weights' must be non-negative")
      weights <- weights / mean(weights)
      wsqrt <- sqrt(weights)
    }
    
    ### check y
    ylev <- NULL
    if(family$family == "gaussian"){
      y <- as.numeric(y)
    } else if(family$family == "binomial"){
      if(is.character(y)) y <- as.factor(y)
      if(is.factor(y)){
        #if(nlevels(y) != 2L) stop("Input 'y' must be (coercible into) a factor with two levels when family = 'binomial'.")
        ylev <- levels(y)
        y <- ifelse(y == ylev[1], 0.0, 1.0)
      } else if(is.matrix(y)) {
        if(ncol(y) != 2L | any(y < 0)) stop("Input 'y' must be a matrix (# success, # failure) when family = 'binomial'")
        ytotal <- rowSums(y)
        weights <- weights * ytotal
        wsqrt <- sqrt(weights)
        y <- y[,1] / ytotal
      } else {
        y <- as.numeric(y)
        if(any(y < 0) | any(y > 1)) stop("Input 'y' must contain values between 0 and 1 when family = 'binomial'" )
      }
      if(is.null(ylev)) ylev <- c(0, 1)
    } else if(family$family == "multinomial"){
      if(is.character(y)) y <- as.factor(y)
      yorig <- y
      if(is.factor(y)){
        yfac <- y
        yint <- as.integer(y)
        ylev <- levels(y)
        nlev <- nlevels(y)
        if(nlev < 3L) stop("Input 'y' must be (coercible into) a factor with 3 or more levels.")
        y <- matrix(0.0, nrow = nobs, ncol = nlev)
        colnames(y) <- ylev
        for(i in 1:nobs) y[i,yint[i]] <- 1.0
      } else if(is.matrix(y)){
        nlev <- ncol(y)
        ylev <- colnames(y)
        if(is.null(ylev)){
          ylev <- paste0("y", 1:nlev)
          colnames(y) <- ylev
        }
        y <- t(apply(y, 1, as.integer))
        if(min(y) < 0) stop("Input 'y' must be a matrix of counts (i.e, non-negative integers)")
        yrowsum <- rowSums(y)
        y <- y / yrowsum + 0.0
        weights <- weights * yrowsum
        wsqrt <- sqrt(weights)
      } else {
        stop("Invalid data input: 'y' must be a factor or matrix for when family = 'multinomial'.")
      }
    } else if(family$family == "poisson") {
      y <- as.integer(y)
      if(any(y < 0)) stop("Input 'y' must contain non-negative integers when family = 'poisson'.")
    } else if(family$family == "negative.binomial") {
      y <- as.integer(y)
      if(any(y < 0)) stop("Input 'y' must contain non-negative integers when family = 'negative.binomial'.")
    } else if(family$family == "Gamma") {
      y <- as.numeric(y)
      if(any(y <= 0)) stop("Input 'y' must contain non-negative numerics when family = 'Gamma'.")
    } else if(family$family == "inverse.gaussian") {
      y <- as.numeric(y)
      if(any(y <= 0)) stop("Input 'y' must contain non-negative numerics when family = 'inverse.gaussian'.")
    } else {
      warning("need to add checks here...")
    }
    
    ### check offset
    if(is.null(offset)){
      include.offset <- FALSE
      offset <- rep(0.0, nobs)
      if(family$family == "multinomial") offset <- matrix(offset, nrow = nobs, ncol = nlev)
    } else {
      include.offset <- TRUE
      if(family$family == "multinomial"){
        offset <- as.matrix(offset) + 0.0
        if(nrow(offset) != nobs) stop("Inputs 'x' and 'offset' must satisfy:  nrow(x) == nrow(offset)")
        if(ncol(offset) == 1L){
          offset <- matrix(offset, nrow = nobs, ncol = nlev)
        } else {
          if(ncol(offset) != nlev) stop("Input 'offset' must be a vector of length nobs\n or a matrix of dimension nobs x nlev")
        }
      } else {
        offset <- as.numeric(offset)
        if(length(offset) != nobs) stop("Inputs 'y' and 'offset' must satisfy:  length(y) == length(offset)")
      }
    }
    
    ### check alpha
    alpha <- as.numeric(alpha[1])
    if(alpha < 0 | alpha > 1) stop("Input 'alpha' must satisfy:  0 <= alpha <= 1")
    
    ### check lambda and nlambda
    if(is.null(lambda)){
      nolam <- TRUE
      nlambda <- as.integer(nlambda[1])
      if(nlambda <= 0) stop("Input 'nlambda' must be a positive integer")
      lambda <- rep(0.0, nlambda)
    } else {
      nolam <- FALSE
      lambda <- as.numeric(lambda)
      if(length(lambda) > 1L) lambda <- sort(lambda, decreasing = TRUE)
      if(any(lambda < 0)) stop("Input 'lambda' must contain non-negative values")
      nlambda <- length(lambda)
    } # end if(is.null(lambda))
    
    ### check lambda.min.ratio
    lambda.min.ratio <- as.numeric(lambda.min.ratio[1])
    if(lambda.min.ratio <= 0 | lambda.min.ratio >= 1) stop("Input 'lambda.min.ratio' must satisfy:  0 < lambda.min.ratio < 1")
    
    ### check penalty.factor
    if(is.null(penalty.factor)){
      penalty.factor <- sqrt(gsize)
    } else {
      penalty.factor <- as.numeric(penalty.factor)
      if(length(penalty.factor) != ngrps) stop("Inputs 'group' and 'penalty.factor' must satisfy:  nlevels(group) == length(penalty.factor)")
      if(any(penalty.factor < 0)) stop("Input 'penalty.factor' must be non-negative")
    }
    
    ### check penalty
    penalty <- penalty[1]
    if(is.integer(penalty)){
      if(penalty < 1L || penalty > 3L) stop("Invalid 'penalty': must be 1 (LASSO), 2 (MCP), or 3 (SCAD)")
    } else {
      penalty <- toupper(as.character(penalty))
      penalty <- pmatch(penalty, c("LASSO", "MCP", "SCAD"))
      if(is.na(penalty)) stop("Invalid 'penalty': must be 'LASSO', 'MCP', or 'SCAD'")
    }
    
    ### check gamma
    gamma <- as.numeric(gamma[1])
    if(penalty == "MCP"){
      if(gamma <= 1L) stop("Need gamma > 1 when penalty = 'MCP'")
    } else if(penalty == "SCAD"){
      if(gamma <= 2L) stop("Need gamma > 2 when penalty = 'SCAD'")
    }
    
    ### standardized
    standardized <- as.logical(standardized[1])
    if(!any(standardized == c(TRUE, FALSE))) stop("Input 'standardized' must be TRUE or FALSE")
    
    ### orthogonalized
    orthogonalized <- as.logical(orthogonalized[1])
    if(!any(orthogonalized == c(TRUE, FALSE))) stop("Input 'orthogonalized' must be TRUE or FALSE")
    
    ### check intercept
    intercept <- as.logical(intercept[1])
    if(!any(intercept == c(TRUE, FALSE))) stop("Input 'intercept' must be TRUE or FALSE")
    if(intercept) gnames <- c("(Intercept)", gnames)
    
    ### check thresh
    thresh <- as.numeric(thresh[1])
    if(thresh <= 0) stop("Input 'thresh' must be a positive numeric")
    
    ### check maxit
    maxit <- as.integer(maxit[1])
    if(maxit <= 0) stop("Input 'maxit' must be a positive integer")
    
    ### check proglang
    proglangs <- c("Fortran", "R")
    proglang <- as.character(proglang[1])
    proglang <- pmatch(toupper(proglang), toupper(proglangs))
    if(is.na(proglang)){
      stop("Input 'proglang' must be 'Fortran' or 'R'.")
    }
    proglang <- proglangs[proglang]
    
    
    ######***######   WORK   ######***######
    
    ### orthogonalized?
    if(orthogonalized){
      xproj <- vector("list", ngrps)
      for(k in 1:ngrps){
        id <- which(group == k)
        nk <- length(id)
        xtemp <- wsqrt * x[,id]
        if(nk == 1L){
          xproj[[k]] <- 1 / sqrt(mean((xtemp - mean(xtemp))^2))
          x[,id] <- x[,id] * xproj[[k]]
        } else {
          xeig <- eigen(crossprod(xtemp - matrix(colMeans(xtemp), nobs, nk, byrow = TRUE))/nobs, symmetric = TRUE)
          xrank <- sum(xeig$values > xeig$values[1] * nk * .Machine$double.eps)
          xproj[[k]] <- xeig$vectors[,1:xrank,drop=FALSE] %*% diag(1/sqrt(xeig$values[1:xrank]), xrank, xrank)
          if(xrank < nk){
            xproj[[k]] <- cbind(xproj[[k]], matrix(0.0, nk, nk - xrank))
          }
          x[,id] <- x[,id] %*% xproj[[k]]
        }
      }
    } # end if(orthogonalized)
    
    ### check family
    if(family$family == "gaussian"){
      
      ## call fortran or R code
      if(proglang == "Fortran"){
        res <- .Fortran("grpnet_gaussian",
                        nobs = nobs,
                        nvars = nvars,
                        x = x,
                        y = y,
                        w = weights,
                        off = offset,
                        ngrps = ngrps,
                        gsize = gsize, 
                        pw = penalty.factor,
                        alpha = alpha,
                        nlam = nlambda,
                        lambda = lambda,
                        lmr = lambda.min.ratio, 
                        penid = penalty,
                        gamma = gamma,
                        eps = thresh,
                        maxit = maxit,
                        standardize = as.integer(standardized),
                        intercept = as.integer(intercept),
                        ibeta = rep(0.0, nlambda),
                        betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                        iters = rep(0L, nlambda),
                        nzgrps = rep(0L, nlambda),
                        nzcoef = rep(0L, nlambda),
                        edfs = rep(0.0, nlambda),
                        devs = rep(0.0, nlambda),
                        nulldev = 0.0)
      } else {
        res <- R_grpnet_gaussian(nobs = nobs,
                                 nvars = nvars,
                                 x = x,
                                 y = y,
                                 w = weights,
                                 off = offset,
                                 ngrps = ngrps,
                                 gsize = gsize, 
                                 pw = penalty.factor,
                                 alpha = alpha,
                                 nlam = nlambda,
                                 lambda = lambda,
                                 lmr = lambda.min.ratio, 
                                 penid = penalty,
                                 gamma = gamma,
                                 eps = thresh,
                                 maxit = maxit,
                                 standardize = as.integer(standardized),
                                 intercept = as.integer(intercept),
                                 ibeta = rep(0.0, nlambda),
                                 betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                                 iters = rep(0L, nlambda),
                                 nzgrps = rep(0L, nlambda),
                                 nzcoef = rep(0L, nlambda),
                                 edfs = rep(0.0, nlambda),
                                 devs = rep(0.0, nlambda),
                                 nulldev = 0.0)
        
      } # end if(proglang == "Fortran")
      
    } else if(family$family == "binomial"){
      
      ## call fortran or R code
      if(proglang == "Fortran"){
        res <- .Fortran("grpnet_binomial",
                        nobs = nobs,
                        nvars = nvars,
                        x = x,
                        y = y,
                        w = weights,
                        off = offset,
                        ngrps = ngrps,
                        gsize = gsize, 
                        pw = penalty.factor,
                        alpha = alpha,
                        nlam = nlambda,
                        lambda = lambda,
                        lmr = lambda.min.ratio, 
                        penid = penalty,
                        gamma = gamma,
                        eps = thresh,
                        maxit = maxit,
                        standardize = as.integer(standardized),
                        intercept = as.integer(intercept),
                        ibeta = rep(0.0, nlambda),
                        betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                        iters = rep(0L, nlambda),
                        nzgrps = rep(0L, nlambda),
                        nzcoef = rep(0L, nlambda),
                        edfs = rep(0.0, nlambda),
                        devs = rep(0.0, nlambda),
                        nulldev = 0.0)
      } else {
        res <- R_grpnet_binomial(nobs = nobs,
                                 nvars = nvars,
                                 x = x,
                                 y = y,
                                 w = weights,
                                 off = offset,
                                 ngrps = ngrps,
                                 gsize = gsize, 
                                 pw = penalty.factor,
                                 alpha = alpha,
                                 nlam = nlambda,
                                 lambda = lambda,
                                 lmr = lambda.min.ratio, 
                                 penid = penalty,
                                 gamma = gamma,
                                 eps = thresh,
                                 maxit = maxit,
                                 standardize = as.integer(standardized),
                                 intercept = as.integer(intercept),
                                 ibeta = rep(0.0, nlambda),
                                 betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                                 iters = rep(0L, nlambda),
                                 nzgrps = rep(0L, nlambda),
                                 nzcoef = rep(0L, nlambda),
                                 edfs = rep(0.0, nlambda),
                                 devs = rep(0.0, nlambda),
                                 nulldev = 0.0)
      } # end if(proglang == "Fortran")
      
    } else if(family$family == "multinomial"){
      
      ## call fortran or R code
      if(proglang == "Fortran"){
        res <- .Fortran("grpnet_multinom",
                        nobs = nobs,
                        nvars = nvars,
                        nresp = nlev,
                        x = x,
                        y = y,
                        w = weights,
                        off = offset,
                        ngrps = ngrps,
                        gsize = gsize, 
                        pw = penalty.factor,
                        alpha = alpha,
                        nlam = nlambda,
                        lambda = lambda,
                        lmr = lambda.min.ratio, 
                        penid = penalty,
                        gamma = gamma,
                        eps = thresh,
                        maxit = maxit,
                        standardize = as.integer(standardized),
                        intercept = as.integer(intercept),
                        ibeta = matrix(0.0, nrow = nlev, ncol = nlambda),
                        betas = array(0.0, dim = c(nvars, nlev, nlambda)),
                        iters = rep(0L, nlambda),
                        nzgrps = rep(0L, nlambda),
                        nzcoef = rep(0L, nlambda),
                        edfs = rep(0.0, nlambda),
                        devs = rep(0.0, nlambda),
                        nulldev = 0.0)
      } else {
        res <- R_grpnet_multinom(nobs = nobs,
                                 nvars = nvars,
                                 nresp = nlev,
                                 x = x,
                                 y = y,
                                 w = weights,
                                 off = offset,
                                 ngrps = ngrps,
                                 gsize = gsize, 
                                 pw = penalty.factor,
                                 alpha = alpha,
                                 nlam = nlambda,
                                 lambda = lambda,
                                 lmr = lambda.min.ratio, 
                                 penid = penalty,
                                 gamma = gamma,
                                 eps = thresh,
                                 maxit = maxit,
                                 standardize = as.integer(standardized),
                                 intercept = as.integer(intercept),
                                 ibeta = matrix(0.0, nrow = nlev, ncol = nlambda),
                                 betas = array(0.0, dim = c(nvars, nlev, nlambda)),
                                 iters = rep(0L, nlambda),
                                 nzgrps = rep(0L, nlambda),
                                 nzcoef = rep(0L, nlambda),
                                 edfs = rep(0.0, nlambda),
                                 devs = rep(0.0, nlambda),
                                 nulldev = 0.0)
      } # end if(proglang == "Fortran")
      
      ## post-process coefs
      rownames(res$ibeta) <- ylev
      colnames(res$ibeta) <- paste0("s", 1:nlambda)
      betas <- vector("list", nlev)
      names(betas) <- ylev
      for(j in 1:nlev) {
        betas[[j]] <- res$betas[,j,]
        rownames(betas[[j]]) <- xnames
        colnames(betas[[j]]) <- paste0("s", 1:nlambda)
      }
      res$betas <- betas
      
    } else if(family$family == "poisson"){
    
      ## call fortran or R code
      if(proglang == "Fortran"){
        res <- .Fortran("grpnet_poisson",
                        nobs = nobs,
                        nvars = nvars,
                        x = x,
                        y = as.numeric(y),
                        w = weights,
                        off = offset,
                        ngrps = ngrps,
                        gsize = gsize, 
                        pw = penalty.factor,
                        alpha = alpha,
                        nlam = nlambda,
                        lambda = lambda,
                        lmr = lambda.min.ratio, 
                        penid = penalty,
                        gamma = gamma,
                        eps = thresh,
                        maxit = maxit,
                        standardize = as.integer(standardized),
                        intercept = as.integer(intercept),
                        ibeta = rep(0.0, nlambda),
                        betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                        iters = rep(0L, nlambda),
                        nzgrps = rep(0L, nlambda),
                        nzcoef = rep(0L, nlambda),
                        edfs = rep(0.0, nlambda),
                        devs = rep(0.0, nlambda),
                        nulldev = 0.0)
      } else {
        res <- R_grpnet_poisson(nobs = nobs,
                                nvars = nvars,
                                x = x,
                                y = as.numeric(y),
                                w = weights,
                                off = offset,
                                ngrps = ngrps,
                                gsize = gsize, 
                                pw = penalty.factor,
                                alpha = alpha,
                                nlam = nlambda,
                                lambda = lambda,
                                lmr = lambda.min.ratio, 
                                penid = penalty,
                                gamma = gamma,
                                eps = thresh,
                                maxit = maxit,
                                standardize = as.integer(standardized),
                                intercept = as.integer(intercept),
                                ibeta = rep(0.0, nlambda),
                                betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                                iters = rep(0L, nlambda),
                                nzgrps = rep(0L, nlambda),
                                nzcoef = rep(0L, nlambda),
                                edfs = rep(0.0, nlambda),
                                devs = rep(0.0, nlambda),
                                nulldev = 0.0)
      } # end if(proglang == "Fortran")
      
    } else if(family$family == "negative.binomial"){
      
      ## call fortran or R code
      if(proglang == "Fortran"){
        res <- .Fortran("grpnet_negbin",
                        nobs = nobs,
                        nvars = nvars,
                        x = x,
                        y = as.numeric(y),
                        w = weights,
                        off = offset,
                        ngrps = ngrps,
                        gsize = gsize, 
                        pw = penalty.factor,
                        alpha = alpha,
                        nlam = nlambda,
                        lambda = lambda,
                        lmr = lambda.min.ratio, 
                        penid = penalty,
                        gamma = gamma,
                        eps = thresh,
                        maxit = maxit,
                        standardize = as.integer(standardized),
                        intercept = as.integer(intercept),
                        ibeta = rep(0.0, nlambda),
                        betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                        iters = rep(0L, nlambda),
                        nzgrps = rep(0L, nlambda),
                        nzcoef = rep(0L, nlambda),
                        edfs = rep(0.0, nlambda),
                        devs = rep(0.0, nlambda),
                        nulldev = 0.0,
                        theta = theta)
      } else {
        res <- R_grpnet_negbin(nobs = nobs,
                               nvars = nvars,
                               x = x,
                               y = as.numeric(y),
                               w = weights,
                               off = offset,
                               ngrps = ngrps,
                               gsize = gsize, 
                               pw = penalty.factor,
                               alpha = alpha,
                               nlam = nlambda,
                               lambda = lambda,
                               lmr = lambda.min.ratio, 
                               penid = penalty,
                               gamma = gamma,
                               eps = thresh,
                               maxit = maxit,
                               standardize = as.integer(standardized),
                               intercept = as.integer(intercept),
                               ibeta = rep(0.0, nlambda),
                               betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                               iters = rep(0L, nlambda),
                               nzgrps = rep(0L, nlambda),
                               nzcoef = rep(0L, nlambda),
                               edfs = rep(0.0, nlambda),
                               devs = rep(0.0, nlambda),
                               nulldev = 0.0,
                               theta = theta)
      } # end if(proglang == "Fortran")
      
    } else if(family$family == "Gamma"){
      
      ## call fortran or R code
      if(proglang == "Fortran"){
        res <- .Fortran("grpnet_gamma",
                        nobs = nobs,
                        nvars = nvars,
                        x = x,
                        y = y,
                        w = weights,
                        off = offset,
                        ngrps = ngrps,
                        gsize = gsize, 
                        pw = penalty.factor,
                        alpha = alpha,
                        nlam = nlambda,
                        lambda = lambda,
                        lmr = lambda.min.ratio, 
                        penid = penalty,
                        gamma = gamma,
                        eps = thresh,
                        maxit = maxit,
                        standardize = as.integer(standardized),
                        intercept = as.integer(intercept),
                        ibeta = rep(0.0, nlambda),
                        betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                        iters = rep(0L, nlambda),
                        nzgrps = rep(0L, nlambda),
                        nzcoef = rep(0L, nlambda),
                        edfs = rep(0.0, nlambda),
                        devs = rep(0.0, nlambda),
                        nulldev = 0.0)
      } else {
        res <- R_grpnet_gamma(nobs = nobs,
                              nvars = nvars,
                              x = x,
                              y = y,
                              w = weights,
                              off = offset,
                              ngrps = ngrps,
                              gsize = gsize, 
                              pw = penalty.factor,
                              alpha = alpha,
                              nlam = nlambda,
                              lambda = lambda,
                              lmr = lambda.min.ratio, 
                              penid = penalty,
                              gamma = gamma,
                              eps = thresh,
                              maxit = maxit,
                              standardize = as.integer(standardized),
                              intercept = as.integer(intercept),
                              ibeta = rep(0.0, nlambda),
                              betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                              iters = rep(0L, nlambda),
                              nzgrps = rep(0L, nlambda),
                              nzcoef = rep(0L, nlambda),
                              edfs = rep(0.0, nlambda),
                              devs = rep(0.0, nlambda),
                              nulldev = 0.0)
      } # end if(proglang == "Fortran")
      
    } else if(family$family == "inverse.gaussian"){
      
      ## call fortran or R code
      if(proglang == "Fortran"){
        res <- .Fortran("grpnet_invgaus",
                        nobs = nobs,
                        nvars = nvars,
                        x = x,
                        y = y,
                        w = weights,
                        off = offset,
                        ngrps = ngrps,
                        gsize = gsize, 
                        pw = penalty.factor,
                        alpha = alpha,
                        nlam = nlambda,
                        lambda = lambda,
                        lmr = lambda.min.ratio, 
                        penid = penalty,
                        gamma = gamma,
                        eps = thresh,
                        maxit = maxit,
                        standardize = as.integer(standardized),
                        intercept = as.integer(intercept),
                        ibeta = rep(0.0, nlambda),
                        betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                        iters = rep(0L, nlambda),
                        nzgrps = rep(0L, nlambda),
                        nzcoef = rep(0L, nlambda),
                        edfs = rep(0.0, nlambda),
                        devs = rep(0.0, nlambda),
                        nulldev = 0.0)
      } else {
        res <- R_grpnet_invgaus(nobs = nobs,
                                nvars = nvars,
                                x = x,
                                y = y,
                                w = weights,
                                off = offset,
                                ngrps = ngrps,
                                gsize = gsize, 
                                pw = penalty.factor,
                                alpha = alpha,
                                nlam = nlambda,
                                lambda = lambda,
                                lmr = lambda.min.ratio, 
                                penid = penalty,
                                gamma = gamma,
                                eps = thresh,
                                maxit = maxit,
                                standardize = as.integer(standardized),
                                intercept = as.integer(intercept),
                                ibeta = rep(0.0, nlambda),
                                betas = matrix(0.0, nrow = nvars, ncol = nlambda),
                                iters = rep(0L, nlambda),
                                nzgrps = rep(0L, nlambda),
                                nzcoef = rep(0L, nlambda),
                                edfs = rep(0.0, nlambda),
                                devs = rep(0.0, nlambda),
                                nulldev = 0.0)
      } # end if(proglang == "Fortran")
      
    } # end if(family$family == "gaussian")
    
    
    ######***######   POST-PROCESSING   ######***######
    
    ### orthognalize?
    if(orthogonalized){
      if(family$family == "multinomial"){
        for(k in 1:ngrps){
          id <- which(group == k)
          nk <- length(id)
          if(nk == 1L){
            for(l in 1:nlev){
              res$betas[[l]][id,] <- res$betas[[l]][id,] * xproj[[k]]
            }
          } else {
            for(l in 1:nlev){
              res$betas[[l]][id,] <- xproj[[k]] %*% res$betas[[l]][id,]
            }
          }
        }
      } else {
        for(k in 1:ngrps){
          id <- which(group == k)
          nk <- length(id)
          if(nk == 1L){
            res$betas[id,] <- res$betas[id,] * xproj[[k]]
          } else {
            res$betas[id,] <- xproj[[k]] %*% res$betas[id,]
          }
        }
      } # end if(family == "multinomial")
    } # end if(orthogonalized)
    
    ## name coefficients
    if(family$family != "multinomial"){
      rownames(res$betas) <- xnames
      colnames(res$betas) <- paste0("s", 1:nlambda)
    }
    
    ## collect arguments
    args <- list(penalty.factor = penalty.factor,
                 penalty = penalty,
                 gamma = gamma,
                 theta = theta,
                 standardized = standardized,
                 orthogonalized = orthogonalized,
                 intercept = intercept,
                 thresh = thresh,
                 maxit = maxit)
    
    ## intercept
    if(intercept){
      ingroup <- c(0, ingroup)
      ngrps <- ngrps + 1L
      thenames <- names(res$pw)
      res$pw <- c(0, res$pw)
      names(res$pw) <- c("(Intercept)", thenames)
    }
    
    ## end clock
    toc <- proc.time()[3]
    
    ## collect results
    res <- list(call = grpnet.call,
                a0 = res$ibeta, 
                beta = res$betas, 
                alpha = alpha,
                lambda = res$lambda,
                family = family,
                dev.ratio = 1 - res$devs / res$nulldev,
                nulldev = res$nulldev,
                df = res$edfs,
                nzgrp = res$nzgrps,
                nzcoef = res$nzcoef,
                xsd = res$pw,
                ylev = ylev,
                nobs = nobs,
                group = ingroup,
                ngroups = ngrps,
                npasses = res$iters, 
                time = toc - tic,
                offset = include.offset,
                args = args,
                term.labels = gnames)
    
    ### return results
    class(res) <- "grpnet"
    return(res)
    
  } # end grpnet.default

Try the grpnet package in your browser

Any scripts or data that you put into this service are public.

grpnet documentation built on Sept. 11, 2024, 6:21 p.m.