Nothing
#' @title Provides operating characteristics of group sequential MAMS trial for continuous outcome
#' @description Computes power and other characteristics for group-sequential MAMS trial for continuous outcome.
#' @param alpha numeric Type I error.
#' @param beta numeric Type II error.
#' @param p numeric Number of treatment arms.
#' @param frac numeric Vector of fractions for information time at each look.
#' @param delta0 numeric Standardized effect size in ineffective arm.
#' @param delta1 numeric Standardized effect size in effective arm.
#' @param nsim numeric Number of simulations.
#' @param seed numeric Random seed number.
#' @return A list of power, stage-wise probability of success, average sample size used per arm, stopping probability, probability of futility.
#' @examples
#' op_power_cont(alpha = 0.05,
#' beta = 0.1,
#' p = 4,
#' frac = c(1 / 5, 2 / 5, 3 / 5, 4 / 5, 1),
#' delta0 = 0.178,
#' delta1 = 0.545,
#' nsim = 12,
#' seed = 12)
#' @export
op_power_cont <- function(alpha, beta, p, frac, delta0, delta1, nsim, seed) {
K<-p
if (K <= 1) {
stop("K should be greater than 1.")
}
if (length(frac) == 1) {
stop("The length of frac should be greater than 1.")
}
j <- length(frac)
bound <- scprt(alpha = alpha, k = K, frac = frac)
l <- size_cont(delta0 = delta0, delta1 = delta1, alpha = alpha, beta = beta, k = K)
mu0 <- 0
mu1 <- delta1
mu4 <- delta0
r <- 1
s2 <- numeric(length = j)
asn <- 0
frac <- frac
n <- numeric(length = j)
for (i in 1:j) {
n[i] <- ceiling(l * frac[i])
}
a <- data.frame()
for (i in 1:K) {
a <- rbind.data.frame(a, bound$lshape)
}
b <- data.frame()
for (i in 1:K) {
b <- rbind.data.frame(b, bound$ushape)
}
sp <- numeric()
pf <- numeric()
set.seed(seed)
for (e in 1:nsim) {
m <- list()
m[[1]] <- stats::rnorm(l, mean = mu0, sd = 1)
m[[2]] <- stats::rnorm(l, mean = mu1, sd = 1)
for (i in 3:(K + 1)) {
m[[i]] <- stats::rnorm(l, mean = mu4, sd = 1)
}
sd <- 1
z <- data.frame(matrix(ncol = j, nrow = 0))
for (i in 1:j) {
for (p in 1:(K)) {
z[p, i] <- sqrt(r * n[i] / (sd^2 * (1 + r))) * (mean(m[[p + 1]][1:(n[i])]) - mean(m[[1]][1:n[i]]))
}
}
m1 <- as.numeric()
for (i in 1:K) {
if (i == 1) {
m1[i] <- z[1, 1] > b[i, 1]
} else {
m1[i] <- z[1, 1] > z[i, 1]
}
}
pk <- prod(m1)
if (pk >= 1) {
s2[1] <- s2[1] + 1
}
w <- K
g <- data.frame(matrix(ncol = w - 1, nrow = 0))
for (q in 2:(length(g) + 1)) {
p <- numeric(length = (j - 1) * 3)
k <- seq(1, 25, by = 3)[1:(j - 1)]
sk <- list(a = 1, b = c(2, 3))
for (i in 2:(j)) {
if (i == 2) {
p[k[i - 1]] <- z[q, (i - 1)] < a[q, (i - 1)]
p[k[i - 1] + 1] <- z[q, (i - 1)] > a[q, (i - 1)] & z[q, (i - 1)] < b[q, (i - 1)]
p[k[i - 1] + 2] <- z[1, (i)] > z[q, (i)]
g[i, q - 1] <- 0
for (o in seq_len(length(sk))) {
g[i, q - 1] <- g[i, q - 1] + prod(p[sk[[o]]])
}
next
}
tk <- sk[[length(sk)]]
sk[[length(sk)]][length(sk[[length(sk)]])] <- sk[[length(sk)]][length(sk[[length(sk)]])] + 1
sk[[length(sk) + 1]] <- tk
sk[[length(sk)]][length(sk[[length(sk)]])] <- sk[[length(sk)]][length(sk[[length(sk)]])] + 2
sk[[length(sk)]][length(sk[[length(sk)]]) + 1] <- sk[[length(sk)]][length(sk[[length(sk)]])] + 1
p[k[i - 1]] <- z[q, (i - 1)] < a[q, (i - 1)]
p[k[i - 1] + 1] <- z[q, (i - 1)] > a[q, (i - 1)] & z[q, (i - 1)] < b[q, (i - 1)]
p[k[i - 1] + 2] <- z[1, i] > z[q, i]
g[i, q - 1] <- 0
for (o in seq_len(length(sk))) {
g[i, q - 1] <- g[i, q - 1] + prod(p[sk[[o]]])
}
}
}
sj <- data.frame(matrix(ncol = 1, nrow = 0))
for (q in 1:1) {
# j<-3
p <- numeric(length = (j - 1) * 2)
k <- seq(1, 20, by = 2)[1:(j - 1)]
sk <- list(a = c(1, 2))
for (i in 2:(j)) {
if (i == 2) {
# p[k[i-1]]<-z[q,(i-1)]<a[q,(i-1)]
p[k[i - 1]] <- z[q, (i - 1)] > a[q, (i - 1)] & z[q, (i - 1)] < b[q, (i - 1)]
p[k[i - 1] + 1] <- z[1, (i)] > b[q, (i)]
sj[i, 1] <- prod(p[sk[[length(sk)]]])
next
}
sk[[length(sk) + 1]] <- sk[[length(sk)]]
sk[[length(sk)]][length(sk[[length(sk)]])] <- sk[[length(sk)]][length(sk[[length(sk)]])] + 1
sk[[length(sk)]][length(sk[[length(sk)]]) + 1] <- sk[[length(sk)]][length(sk[[length(sk)]])] + 1
p[k[i - 1]] <- z[q, (i - 1)] > a[q, (i - 1)] & z[q, (i - 1)] < b[q, (i - 1)]
p[k[i - 1] + 1] <- z[1, (i)] > b[q, (i)]
sj[i, 1] <- prod(p[sk[[length(sk)]]])
}
}
ff <- cbind.data.frame(g, sj)
pl <- numeric(length = j)
for (d in 2:j) {
if (prod(ff[d, ]) >= 1) {
s2[d] <- s2[d] + 1
}
}
lp <- z
z <- list()
for (i in seq_len(length(lp))) {
z[[i]] <- lp[, i]
}
for (i in 1:(j - 1)) {
if (i == 1) {
k <- numeric(length = j)
k[i] <- K
effn <- sum(z[[i]] >= b[1, i])
fuln <- sum(z[[i]] <= a[1, i])
} else {
arms2 <- which((z[[i - 1]] <= a[1, i - 1]) == FALSE)
k[i] <- length(arms2)
z[[i]] <- z[[i]][arms2]
effn <- sum(z[[i]] >= b[1, i])
fuln <- sum(z[[i]] <= a[1, i])
}
if (effn >= 1 | fuln == k[i]) {
pq <- numeric()
for (s in c(1:i)) {
if (s == i) {
pq[s] <- (n[s]) * ((k[s]) + 1)
break
}
if (k[s] == k[s + 1]) {
pq[s] <- 0
} else if (k[s] > k[s + 1]) {
pq[s] <- (k[s] - k[s + 1]) * n[s]
}
}
asn <- asn + sum(pq)
break
} else {
if ((i + 1) == (j)) {
arms3 <- which((z[[i]] <= a[1, i]) == FALSE)
k[i + 1] <- length(arms3)
pq <- numeric()
for (s in c(1:j)) {
if (s == j) {
pq[s] <- (n[s]) * ((k[s]) + 1)
break
}
if (k[s] == k[s + 1]) {
pq[s] <- 0
} else if (k[s] > k[s + 1]) {
pq[s] <- (k[s] - k[s + 1]) * n[s]
}
}
asn <- asn + sum(pq)
}
}
}
z <- lp
stopprob <- rep(0, j)
probfut <- rep(0, j)
stop <- rep(0, j)
stopF <- matrix(NA, K, j)
stopE <- matrix(NA, K, j)
Fflag <- rep(0, j)
Eflag <- rep(0, j)
for (k in 1:K) {
for (h in 1:j) {
stopF[k, h] <- z[k, h] <= a[k, h]
stopE[k, h] <- z[k, h] >= b[k, h]
}
}
for (k in 1:K) {
if (any(stopF[k, ] == TRUE)) {
s <- min(which(stopF[k, ] == TRUE))
stopF[k, s:j] <- TRUE
}
}
for (h in 1:j) {
if (sum(stopF[, h] == TRUE) == K) {
Fflag[h] <- 1
}
if (sum(stopE[, h] == TRUE) >= 1) {
Eflag[h] <- 1
}
stop[h] <- Eflag[h] + Fflag[h] # stop is rep (0,J) originally, if we stop at stage 3, we will have (0,0,1,0), thus stop records at which stage we stop for current simulation
}
stopstage <- min(which(stop >= 1)) # the stage we should stop, no matter it is due to efficacy or futility
stopFstage <- ifelse(all(Fflag == 0), 0, min(which(Fflag == 1))) # the stage we stop due to futility
if (stopFstage == stopstage) {
probfut[stopFstage] <- 1
}
stopprob[stopstage] <- 1
sp <- rbind.data.frame(stopprob, sp)
pf <- rbind.data.frame(probfut, pf)
}
power <- round(sum(s2) / nsim, 3)
asn <- round(asn / (nsim * (K + 1)), 3)
s2 <- rbind.data.frame(s2 / nsim)
names(s2) <- paste0("look", 1:j)
names(sp) <- paste0("look", 1:j)
names(pf) <- paste0("look", 1:j)
p <- list("Power" = power, "Stagewise Power" = colMeans(s2), "Stopping probability under alternative" = colMeans(sp), "Probability of futility under alternative" = colMeans(pf), "Average sample size used per arm under alternative" = asn)
return(p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.