grs.plot: Diagnostic plot for genetic risk score calculation from...

Description Usage Arguments Author(s) Examples

Description

Each SNP is plotted by coefficient in the risk score (x axis) versus estimated effect size for trait of interest in the testing dataset (y axis). A solid red line shows the effect size estimate for the risk score on the trait of interest in the testing dataset.

Usage

1
2
grs.plot(w, b, s, text = NULL, textpos = NULL, textcex = 0.5,
         alpha = 0.05)

Arguments

w

coefficients for the risk score.

b

aligned beta coefficients in the testing dataset.

s

standard errors for b.

text

optional labels for SNPs

textpos

position for labels for SNPs, as pos argument to text().

textcex

size for lables for SNPs, as cex argument to text().

alpha

determines size of confidence limits plotted.

Author(s)

Toby Johnson Toby.x.Johnson@gsk.com

Examples

1
2
3
4
5
6
7
8
9
data(t2dex)
library(survival)
mycoxph <- coxph(Surv(FollowupDays,FollowupT2D) ~ Overweight,
                 data = t2dex$data) # fit null model
data(t2d.scores)
assoc1 <- grs.onesnp.apply(t2d.scores, mycoxph) # single SNP association
## risk score fit from single SNPs
grs.plot(t2d.scores$coef, assoc1$beta, assoc1$se, t2d.scores$name)
title(xlab = "risk score weight", ylab = "estimated effect size")

Example output

Loading required package: survival

gtx documentation built on May 2, 2019, 5:08 a.m.