Description Usage Arguments Details Value Author(s) Examples
Calculates an approximation to the Bayes Factor for an alternative model where the parameter beta is a priori t distributed, by approximating the likelihood function with a normal distribution.
1 |
beta |
Vector of effect size estimates. |
se |
Vector of associated standard errors. |
priorscale |
Scalar specifying the scale (standard deviation) of the prior on true effect sizes. |
df |
Degrees of freedom for t distribution prior. |
gridrange |
Parameter controlling range of grid for numerical integration. |
griddensity |
Parameter controlling density of points in grid for numerical integration. |
This uses the same normal approximation for the likelihood function as “Bayes factors for genome-wide association studies: comparison with P-values” by John Wakeley, 2009, Genetic Epidemiology 33(1):79-86 at http://dx.doi.org/10.1002/gepi.20359. However, in contrast to that work, a t distribution is used for the prior, which means it is necessary to use a numerical algorithm to calculate the (approximate) Bayes factor.
A vector of approximate Bayes factors.
Toby Johnson Toby.x.Johnson@gsk.com
1 2 3 4 5 6 7 | data(agtstats)
agtstats$pval <- with(agtstats, pchisq((beta/se.GC)^2, df = 1, lower.tail = FALSE))
max1 <- function(bf) return(bf/max(bf, na.rm = TRUE))
agtstats$BF.normal <- with(agtstats, max1(abf.Wakefield(beta, se.GC, 0.05)))
agtstats$BF.t <- with(agtstats, max1(abf.t(beta, se.GC, 0.0208)))
with(agtstats, plot(-log10(pval), log(BF.normal)))
with(agtstats, plot(-log10(pval), log(BF.t)))
|
Loading required package: survival
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.