Nothing
#'@title Anomaly detector using FFT
#'@description Anomaly detection using FFT
#'The FFT model adjusts to the time series. Observations distant from the model are labeled as anomalies.
#'It wraps the FFT model presented in the stats library.
#'@return `hanr_fft` object
#'
#'@examples
#'library(daltoolbox)
#'
#'#loading the example database
#'data(examples_anomalies)
#'
#'#Using simple example
#'dataset <- examples_anomalies$simple
#'head(dataset)
#'
#'# setting up time series fft detector
#'model <- hanr_fft()
#'
#'# fitting the model
#'model <- fit(model, dataset$serie)
#'
# making detection
#'detection <- detect(model, dataset$serie)
#'
#'# filtering detected events
#'print(detection[(detection$event),])
#'
#'@export
hanr_fft <- function() {
obj <- harbinger()
class(obj) <- append("hanr_fft", class(obj))
return(obj)
}
compute_cut_index <- function(freqs) {
cutindex <- which.max(freqs)
if (min(freqs) != max(freqs)) {
threshold <- mean(freqs) + 2.698 * sd(freqs)
freqs[freqs < threshold] <- min(freqs) + max(freqs)
cutindex <- which.min(freqs)
}
return(cutindex)
}
#'@importFrom stats fft
#'@importFrom stats sd
#'@export
detect.hanr_fft <- function(obj, serie, ...) {
if (is.null(serie))
stop("No data was provided for computation", call. = FALSE)
obj <- obj$har_store_refs(obj, serie)
fft_signal <- stats::fft(obj$serie)
spectrum <- base::Mod(fft_signal) ^ 2
half_spectrum <- spectrum[1:(length(obj$serie) / 2 + 1)]
cutindex <- compute_cut_index(half_spectrum)
n <- length(fft_signal)
fft_signal[1:cutindex] <- 0
fft_signal[(n - cutindex):n] <- 0
filtered_series <-
base::Re(stats::fft(fft_signal, inverse = TRUE) / n)
noise <- filtered_series # obj$har_residuals(filtered_series)
anomalies <- obj$har_outliers_idx(noise)
anomalies <- obj$har_outliers_group(anomalies, length(noise))
detection <- obj$har_restore_refs(obj, anomalies = anomalies)
return(detection)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.