Nothing
#'@title Pruned exact linear time (PELT) method
#'@description Change-point detection method that focus on identifying multiple exact change points in mean/variance <doi:10.1080/01621459.2012.737745>.
#'It wraps the BinSeg implementation available in the changepoint library.
#PELT Algorithm: Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational cost, JASA 107(500), 1590–1598
#'@return `hcp_pelt` object
#'@examples
#'library(daltoolbox)
#'
#'#loading the example database
#'data(examples_changepoints)
#'
#'#Using simple example
#'dataset <- examples_changepoints$simple
#'head(dataset)
#'
#'# setting up change point method
#'model <- hcp_pelt()
#'
#'# fitting the model
#'model <- fit(model, dataset$serie)
#'
#'# execute the detection method
#'detection <- detect(model, dataset$serie)
#'
#'# filtering detected events
#'print(detection[(detection$event),])
#'
#'@export
hcp_pelt <- function() {
obj <- harbinger()
class(obj) <- append("hcp_pelt", class(obj))
return(obj)
}
#'@importFrom changepoint cpt.meanvar
#'@export
detect.hcp_pelt <- function(obj, serie, ...) {
if(is.null(serie)) stop("No data was provided for computation", call. = FALSE)
obj <- obj$har_store_refs(obj, serie)
cpt_result <- cpt.meanvar(obj$serie, method = "PELT", test.stat = "Normal", pen.value = "MBIC")
cp <- rep(FALSE, length(obj$serie))
n <- length(cpt_result@cpts)
if (n > 1)
cp[cpt_result@cpts[1:(n-1)]] <- TRUE
detection <- obj$har_restore_refs(obj, change_points = cp)
return(detection)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.