Description Usage Arguments Details Value Author(s) See Also Examples
View source: R/40-hzarPostProcessing.R
Calculate the AIC or the corrected AIC (AICc) for the given likelihood, number of parameters and number of observations.
Extracts the parameters as needed when passed the correct hzar object.
1 2 3 4 5 6  | hzar.AIC.default(maxLL, param.count)
hzar.AICc.default(maxLL, param.count, nObs)
hzar.AIC.hzar.cline(cline)
hzar.AICc.hzar.cline(cline,nObs)
hzar.AIC.hzar.dataGroup(dataGroup)
hzar.AICc.hzar.dataGroup(dataGroup)
 | 
maxLL | 
 The maximum log likelihood value.  | 
param.count | 
 The number of free parameters, also known as the number of degrees of freedom.  | 
nObs | 
 The number of samples observed.  | 
cline | 
 A   | 
dataGroup | 
 A   | 
The formula for AIC used is 2 * (param.count - maxLL).
The formula for AICc used is: AIC + 2 * param.count * (param.count + 1) / (nObs - param.count - 1)
The AIC or AICc score calculated.
Graham Derryberry asterion@alum.mit.edu
AIC
hzar.AIC.hzar.obsDataGroup
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  | print(hzar.AIC.default(-8,3))
print(hzar.AICc.default(-8,3,30))
data(manakinMolecular);
mknAdaA <-
  hzar.doMolecularData1DPops(manakinMolecular$distance,
                             manakinMolecular$ada.A,
                             manakinMolecular$ada.nSamples);
hzar.plot.obsData(mknAdaA);
mknAdaAmodel <-
  hzar.makeCline1DFreq(mknAdaA, scaling="fixed",tails="none");
mknAdaAmodel <-
  hzar.model.addBoxReq(mknAdaAmodel,-30,600);
mknAdaAmodelFitR <-
   hzar.first.fitRequest.old.ML(model=mknAdaAmodel ,
                                mknAdaA,
                                verbose=FALSE);
print(hzar.AIC.hzar.dataGroup(hzar.fit2DataGroup(mknAdaAmodelFitR)))
mknAdaAcline <- hzar.gen.cline(list(center=300,width=10),
                               mknAdaAmodelFitR);
print(hzar.AIC.hzar.cline(mknAdaAcline));
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.