Nothing
RC.bin.bigc<-function(com,sp.bin,rand=1000,na.zero=TRUE,
nworker=4,memory.G=50,big.method=c("loop","no"),
weighted=TRUE,unit.sum=NULL,meta.ab=NULL,
sig.index=c("RC","Confidence","SES"),
detail.null=FALSE,output.bray=FALSE,
taxo.metric="bray", transform.method=NULL,
logbase=2, dirichlet=FALSE)
{
requireNamespace("vegan")
requireNamespace("parallel")
if(max(rowSums(com,na.rm = TRUE))<=1 & (!dirichlet))
{
warning("The values in com are less than 1, thus considered as proportional data, Dirichlet distribution is used to assign abundance in null model.")
dirichlet=TRUE
}
if(.Platform$OS.type=="windows")
{
if(utils::memory.limit()<memory.G*1024)
{
memotry=try(utils::memory.limit(size=memory.G*1024),silent = TRUE)
if(inherits(memotry,"try-error")){warning(memotry[1])}
}
}
if(!weighted){com[com>0]=1}
sig.index=sig.index[1]
if(!(sig.index %in% c("RC","Confidence","SES"))){stop("wrong sig.index for RC.pc.")}
bin.lev=levels(as.factor(sp.bin[,1]))
bin.num=length(bin.lev)
bin.BC<-function(comi,bin.lev,bin.num,sp.bin,
unit.sum,na.zero,
taxo.metric,transform.method,logbase)
{
if(!is.null(transform.method))
{
if(inherits(transform.method,"function"))
{
comit=transform.method(comi)
}else{
comit=vegan::decostand(comi,method = transform.method,logbase = logbase,na.rm=TRUE)
}
}else{comit=comi}
com.bin=lapply(1:bin.num, function(i){comit[,match(rownames(sp.bin)[which(sp.bin==bin.lev[i])],colnames(comit))]})
lapply(1:bin.num,
function(i)
{
combini=com.bin[[i]]
if(taxo.metric=='bray' & is.null(transform.method))
{
if(is.null(unit.sum))
{
combinit=combini/rowSums(combini)
combinit[which(rowSums(combini)==0),]=0
binBC=vegan::vegdist(combini,method="bray")
}else{
combinit=combini/unit.sum
combinit[which(unit.sum==0),]=0
binBC=vegan::vegdist(combinit,method="manhattan")/2
}
}else{
binBC=vegan::vegdist(combini,method = taxo.metric)
}
if(na.zero){binBC[is.na(binBC)]=0}
as.matrix(binBC)
})
}
BC.obs<-bin.BC(comi=com,bin.lev=bin.lev,bin.num=bin.num,sp.bin=sp.bin,
unit.sum=unit.sum,na.zero=na.zero,taxo.metric=taxo.metric,
transform.method=transform.method,logbase=logbase)
BC.obs<-array(unlist(BC.obs),dim = c(nrow(BC.obs[[1]]),ncol(BC.obs[[1]]),bin.num))
if(is.null(meta.ab))
{
if(is.null(unit.sum))
{
com.ra=com/rowSums(com)
com.ra[which(rowSums(com)==0),]=0
}else{
com.ra=com/unit.sum
com.ra[which(unit.sum==0),]=0
}
prob.ab=colMeans(com.ra)
}else{
if(is.null(names(meta.ab)))
{
if(length(meta.ab)!=ncol(com)){stop("meta.ab setting is wrong.")}else{prob.ab=meta.ab}
}else{
prob.ab=rep(0,ncol(com))
meta.ab=meta.ab[which(names(meta.ab) %in% colnames(com))]
prob.ab[match(names(meta.ab),colnames(com))]=meta.ab
}
}
com.rd0=com
com.rd0[]=0
id<-(1:ncol(com))
prob.sp<-colSums(com>0)
#prob.ab<-colSums(com)
Si<-rowSums(com>0)
Ni<-rowSums(com)
samp.num=nrow(com)
BC.rand<-function(j,com.rd0,samp.num,id,prob.sp,prob.ab,Si,Ni,na.zero,sp.bin,bin.num,unit.sum,
bin.BC,bin.lev,taxo.metric,transform.method,logbase,dirichlet)
{
requireNamespace("vegan")
com.rd=com.rd0
if(!dirichlet)
{
for(i in 1:samp.num)
{
if(Si[i]==0){com.rd[i,]=0}else{
id.sp<-sample(id,Si[i],replace=FALSE,prob=prob.sp)
if(length(id.sp)==1){count=rep(id.sp,Ni[i])}else{
count<-sample(id.sp,(Ni[i]-Si[i]),replace=TRUE,prob=prob.ab[id.sp])
}
table<-table(count)
com.rd[i,as.numeric(names(table))]=as.vector(table)
com.rd[i,id.sp]=com.rd[i,id.sp]+1
}
}
}else{
for(i in 1:samp.num)
{
if(Si[i]==0){com.rd[i,]=0}else{
id.sp<-sample(id,Si[i],replace=FALSE,prob=prob.sp)
if(length(id.sp)==1){com.rd[i,id.sp]=1}else{
requireNamespace("DirichletReg")
com.rd[i,id.sp]=DirichletReg::rdirichlet(n=1,alpha = prob.ab[id.sp])
}
}
}
}
BCrand<-bin.BC(comi=com.rd,bin.lev=bin.lev,bin.num=bin.num,sp.bin=sp.bin,
unit.sum=unit.sum,na.zero=na.zero,taxo.metric=taxo.metric,
transform.method=transform.method,logbase=logbase)
BCrand
}
if(big.method[1]=="loop")
{
if(detail.null){BC.rdl=list()}
if(sig.index=="RC")
{
alpha=array(0,dim=dim(BC.obs))
}else if(sig.index=="Confidence"){
alpha<-alpha2<-array(0,dim=dim(BC.obs))
}
for(j in 1:rand)
{
message("Now rand BC j=",j," in ",rand,". ",date())
BC.rd=BC.rand(j,com.rd0=com.rd0,samp.num=samp.num,id=id,prob.sp=prob.sp,prob.ab=prob.ab,
Si=Si,Ni=Ni,na.zero=na.zero,sp.bin=sp.bin,bin.num=bin.num,unit.sum=unit.sum,
bin.BC=bin.BC,bin.lev=bin.lev,taxo.metric=taxo.metric,
transform.method=transform.method,logbase=logbase,dirichlet=dirichlet)
BCrd.array=array(unlist(BC.rd),dim=c(nrow(BC.rd[[1]]),ncol(BC.rd[[1]]),length(BC.rd)))
if(detail.null | (sig.index=="SES")){BC.rdl[[j]]=BCrd.array}
if(sig.index=="RC")
{
idxx=which(BCrd.array<BC.obs)
alpha[idxx]=alpha[idxx]+1
idxx=which(BCrd.array==BC.obs)
alpha[idxx]=alpha[idxx]+0.5
}else if(sig.index=="Confidence"){
idxx=which(BC.obs>BCrd.array,arr.ind = TRUE)
alpha[idxx]=alpha[idxx]+1
idxx2=which(BC.obs<BCrd.array,arr.ind = TRUE)
alpha2[idxx]=alpha2[idxx]+1
}
gc()
}
message("----now calculating sig.index of Bray at ",date(),"----")
if(sig.index=="RC")
{
alpha=alpha/rand
rc=(alpha-0.5)*2
result=list()
for(i in 1:(dim(rc)[3]))
{
result[[i]]=rc[,,i]
colnames(result[[i]])<-rownames(result[[i]])<-rownames(com)
}
}else if(sig.index=="Confidence"){
alpha[which(alpha2>alpha, arr.ind = TRUE)]=-alpha2[which(alpha2>alpha, arr.ind = TRUE)]
colnames(alpha)<-rownames(alpha)<-rownames(com)
result=lapply(1:(dim(alpha)[3]),function(i){alpha[,,i]})
}else if(sig.index=="SES"){
result=lapply(1:(dim(BC.obs)[3]),
function(i)
{
BC.rdli=sapply(1:length(BC.rdl),function(x){BC.rdl[[x]][,,i]},simplify = "array")
SESi=(BC.obs[,,i]-apply(BC.rdli,c(1,2),mean))/(apply(BC.rdli,c(1,2),stats::sd))
diag(SESi)<-0
colnames(SESi)<-rownames(SESi)<-rownames(com)
SESi
})
}
}else{
c1<-try(parallel::makeCluster(nworker,type="PSOCK"))
if(inherits(c1,"try-error")){c1 <- try(parallel::makeCluster(nworker, setup_timeout = 0.5))}
if(inherits(c1,"try-error")){c1 <- parallel::makeCluster(nworker, setup_strategy = "sequential")}
message("Now parallel computing. begin at ", date(),". Please wait...")
BC.rd<-parallel::parLapply(c1,1:rand,BC.rand,com.rd0=com.rd0,samp.num=samp.num,
id=id,prob.sp=prob.sp,prob.ab=prob.ab,Si=Si,Ni=Ni,
na.zero=na.zero,sp.bin=sp.bin,bin.num=bin.num,unit.sum=unit.sum,
bin.BC=bin.BC,bin.lev=bin.lev,taxo.metric=taxo.metric,
transform.method=transform.method,logbase=logbase,dirichlet=dirichlet)
parallel::stopCluster(c1)
BC.rd=array(unlist(BC.rd),dim=c(nrow(BC.rd[[1]][[1]]),ncol(BC.rd[[1]][[1]]),length(BC.rd[[1]]),length(BC.rd)))
gc()
message("----now calculating sig.index of Bray at ",date(),"----")
if(sig.index=="RC")
{
comp<-function(x,c){(x<c)+0.5*(x==c)}
alpha=array(rowSums(apply(BC.rd,4,comp,c=BC.obs)),dim=dim(BC.obs))/rand
rc=(alpha-0.5)*2
result=list()
for(i in 1:(dim(rc)[3]))
{
result[[i]]=rc[,,i]
colnames(result[[i]])<-rownames(result[[i]])<-rownames(com)
}
}else if(sig.index=="Confidence"){
BC.obsar=array(BC.obs,dim=dim(BC.rd))
alpha=(apply(BC.obsar>BC.rd,c(1,2,3),sum))/rand
alpha2=(apply(BC.obsar<BC.rd,c(1,2,3),sum))/rand
alpha[which(alpha2>alpha, arr.ind = TRUE)]=-alpha2[which(alpha2>alpha, arr.ind = TRUE)]
result=lapply(1:(dim(alpha)[3]), function(i){out=alpha[,,i];colnames(out)<-rownames(out)<-rownames(com);out})
}else if(sig.index=="SES"){
SES=(BC.obs-apply(BC.rd,c(1,2,3),mean))/(apply(BC.rd,c(1,2,3),stats::sd))
result=lapply(1:(dim(SES)[3]), function(i){out=SES[,,i];diag(out)=0;colnames(out)<-rownames(out)<-rownames(com);out})
}
}
output=list(index=result,sig.index=sig.index)
if(output.bray)
{
colnames(BC.obs)<-rownames(BC.obs)<-rownames(com)
output=c(output,list(BC.obs=lapply(1:(dim(BC.obs)[3]),function(i){BC.obs[,,i]})))
}
if(detail.null)
{
if(big.method[1]=="loop")
{
for(i in 1:length(BC.rdl)){colnames(BC.rdl[[i]])<-rownames(BC.rdl[[i]])<-rownames(com)}
samp2.name=(iCAMP::dist.3col(BC.rdl[[1]][,,1]))[,1:2,drop=FALSE]
BC.randm=lapply(1:(dim(BC.rdl[[1]])[3]),
function(i)
{
outi=matrix(sapply(1:length(BC.rdl),
function(j)
{
(iCAMP::dist.3col(BC.rdl[[j]][,,i]))[,3]
}),ncol=length(BC.rdl))
colnames(outi)=paste0("rand",1:ncol(outi))
data.frame(samp2.name,outi,stringsAsFactors = FALSE)
})
}else{
rownames(BC.rd)<-colnames(BC.rd)<-rownames(com)
samp2.name=(iCAMP::dist.3col(BC.rd[,,1,1]))[,1:2,drop=FALSE]
BC.randm=lapply(1:(dim(BC.rd)[3]),
function(i)
{
outi=matrix(sapply(1:(dim(BC.rd)[4]),
function(j)
{
(iCAMP::dist.3col(BC.rd[,,i,j]))[,3]
}),ncol=(dim(BC.rd)[4]))
colnames(outi)=paste0("rand",1:ncol(outi))
data.frame(samp2.name,outi,stringsAsFactors = FALSE)
})
}
output=c(output,list(rand=BC.randm))
}
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.