Nothing
RC.cm<-function(comm,rand=1000,na.zero=TRUE,nworker=4,
meta.group=NULL,meta.frequency=NULL,meta.ab=NULL,
memory.G=50,weighted=TRUE,unit.sum=NULL,
sig.index=c("RC","Confidence","SES"),
detail.null=FALSE,output.bray=FALSE,silent=FALSE,
taxo.metric="bray", transform.method=NULL, logbase=2,
dirichlet=FALSE)
{
# v20200728 add sig.index, detail.null, output.bray
requireNamespace("vegan")
requireNamespace("parallel")
if(max(rowSums(comm,na.rm = TRUE))<=1 & (!dirichlet))
{
warning("The values in comm are less than 1, thus considered as proportional data, Dirichlet distribution is used to assign abundance in null model.")
dirichlet=TRUE
}
if(.Platform$OS.type=="windows")
{
if(utils::memory.limit()<memory.G*1024)
{
memotry=try(utils::memory.limit(size=memory.G*1024),silent = TRUE)
if(inherits(memotry,"try-error")){warning(memotry[1])}
}
}
if(!weighted){comm[comm>0]=1}
####################
## check IDs in meta communities
if(!is.null(meta.group))
{
sampc=iCAMP::match.name(rn.list = list(comm=comm,meta.group=meta.group))
comm=sampc$comm
meta.group=sampc$meta.group
meta.lev=unique(meta.group[,1])
}else{
meta.group=data.frame(metagrp=rep("Meta",nrow(comm)),stringsAsFactors = FALSE)
rownames(meta.group)=rownames(comm)
meta.lev="Meta"
}
comms=lapply(meta.lev,function(mi){sampi=rownames(meta.group)[which(meta.group[,1]==mi)];comi=comm[which(rownames(comm) %in% sampi),,drop=FALSE];comi[,colSums(comi)>0,drop=FALSE]})
if(is.null(unit.sum))
{
com.ra=comm/rowSums(comm)
com.ra[which(rowSums(comm)==0),]=0
}else{
com.ra=comm/unit.sum
com.ra[which(unit.sum==0),]=0
}
comras=lapply(meta.lev,function(mi){sampi=rownames(meta.group)[which(meta.group[,1]==mi)];comrai=com.ra[which(rownames(com.ra) %in% sampi),,drop=FALSE];comrai[,colSums(comrai)>0,drop=FALSE]})
if(!is.null(meta.frequency))
{
if(sum(!(colnames(comm) %in% colnames(meta.frequency)))){stop('comm has some species not included in meta.frequence.')}
if(sum(!(meta.lev %in% rownames(meta.frequency)))>0)
{
stop('meta.frequency rownames must be the same as metacommunity names in meta.group.')
}else{
meta.frequency=meta.frequency[match(meta.lev,rownames(meta.frequency)),,drop=FALSE]
}
}else{
meta.frequency=matrix(0,nrow = length(meta.lev),ncol = ncol(comm))
rownames(meta.frequency)=meta.lev
colnames(meta.frequency)=colnames(comm)
for(i in 1:length(comms))
{
meta.frequency[i,match(colnames(comms[[i]]),colnames(comm))]=colSums(comms[[i]]>0)
}
}
if(!is.null(meta.ab))
{
if(sum(!(colnames(comm) %in% colnames(meta.ab)))){stop('comm has some species not included in meta.ab')}
if(sum(!(colnames(meta.frequency) %in% colnames(meta.ab)))){stop('meta.frequency has some species not included in meta.ab')}
if(sum(!(meta.lev %in% rownames(meta.ab)))>0)
{
stop('meta.ab rownames must be the same as metacommunity names in meta.group.')
}else{
meta.ab=meta.ab[match(meta.lev,rownames(meta.ab)),match(colnames(meta.frequency),colnames(meta.ab)),drop=FALSE]
}
}else{
meta.ab=matrix(0,nrow = length(meta.lev),ncol = ncol(comm))
rownames(meta.ab)=meta.lev
colnames(meta.ab)=colnames(comm)
for(i in 1:length(comms))
{
meta.ab[i,match(colnames(comms[[i]]),colnames(comm))]=colMeans(comras[[i]])
}
}
####################
## calculate observed beta
sig.index=sig.index[1]
if(!(sig.index %in% c("RC","Confidence","SES"))){stop("wrong sig.index for RC.pc.")}
if(!is.null(unit.sum)){if(length(unit.sum)==1){unit.sum=rep(unit.sum,nrow(comm))}}
BCnew<-function(comi,unit.sum,na.zero,
taxo.metric,transform.method,logbase)
{
if(taxo.metric=='bray' & is.null(transform.method))
{
if(is.null(unit.sum))
{
comit=comi/rowSums(comi)
comit[which(rowSums(comi)==0),]=0
BC=vegan::vegdist(comit,method="bray")
}else{
comit=comi/unit.sum
comit[which(unit.sum==0),]=0
BC=vegan::vegdist(comit,method="manhattan")/2
}
}else{
if(!is.null(transform.method))
{
if(inherits(transform.method,"function"))
{
comit=transform.method(comi)
}else{
comit=vegan::decostand(comi,method = transform.method,logbase = logbase,na.rm=TRUE)
}
}else{comit=comi}
BC=vegan::vegdist(comit,method = taxo.metric)
}
if(na.zero){BC[is.na(BC)]=0}
as.matrix(BC)
}
BC.obs<-BCnew(comm,unit.sum,na.zero,
taxo.metric,transform.method,logbase)
#########################
# Null model
Si=lapply(comms,function(comi){rowSums(comi>0)})
Ni=lapply(comms,function(comi){rowSums(comi)})
BC.rand<-function(j,meta.group,meta.frequency,meta.ab,Si,Ni,na.zero,unit.sum,
BCnew,taxo.metric,transform.method,logbase,dirichlet)
{
requireNamespace("vegan")
com.rd=matrix(0,nrow=nrow(meta.group),ncol=ncol(meta.frequency))
rownames(com.rd)=rownames(meta.group)
colnames(com.rd)=colnames(meta.frequency)
for(k in 1:length(Si))
{
meta.freqk=meta.frequency[k,]
meta.abk=meta.ab[k,]
Sik=Si[[k]]
Nik=Ni[[k]]
if(!dirichlet)
{
for(i in 1:length(Sik))
{
if(Sik[i]!=0)
{
id.sp<-sample(1:ncol(com.rd),Sik[i],replace=FALSE,prob=meta.freqk)
if(length(id.sp)==1){count=rep(id.sp,Nik[i]-1)}else{
count<-sample(id.sp,(Nik[i]-Sik[i]),replace=TRUE,prob=meta.abk[id.sp])
}
tabk<-table(count)
idik=match(names(Sik)[i],rownames(com.rd))
com.rd[idik,as.numeric(names(tabk))]=as.vector(tabk)
com.rd[idik,id.sp]=com.rd[idik,id.sp]+1
}
}
}else{
for(i in 1:length(Sik))
{
if(Sik[i]!=0)
{
id.sp<-sample(1:ncol(com.rd),Sik[i],replace=FALSE,prob=meta.freqk)
idik=match(names(Sik)[i],rownames(com.rd))
if(length(id.sp)==1){com.rd[idik,id.sp]=1}else{
requireNamespace("DirichletReg")
com.rd[idik,id.sp]=DirichletReg::rdirichlet(n=1,alpha = meta.abk[id.sp])
}
}
}
}
}
BCnew(com.rd,unit.sum,na.zero,
taxo.metric,transform.method,logbase)
}
c1<-try(parallel::makeCluster(nworker,type="PSOCK"))
if(inherits(c1,"try-error")){c1 <- try(parallel::makeCluster(nworker, setup_timeout = 0.5))}
if(inherits(c1,"try-error")){c1 <- parallel::makeCluster(nworker, setup_strategy = "sequential")}
if(!silent){message("Now parallel computing. begin at ", date(),". Please wait...")}
BC.rd<-parallel::parLapply(c1,1:rand,BC.rand,meta.group=meta.group,meta.frequency=meta.frequency,meta.ab=meta.ab,
Si=Si,Ni=Ni,na.zero=na.zero,unit.sum=unit.sum,
BCnew=BCnew,taxo.metric=taxo.metric,
transform.method=transform.method,logbase=logbase,dirichlet=dirichlet)
parallel::stopCluster(c1)
BC.rd=array(unlist(BC.rd),dim=c(nrow(BC.rd[[1]]),ncol(BC.rd[[1]]),length(BC.rd)))
gc()
if(!silent){message("----now calculating sig.index of Bray at ",date(),"----")}
if(sig.index=="RC")
{
comp<-function(x,c){(x<c)+0.5*(x==c)}
alpha=matrix(rowSums(apply(BC.rd,3,comp,c=BC.obs)),nrow=nrow(BC.obs))/rand
result=(alpha-0.5)*2
}else if(sig.index=="SES"){
SES=(BC.obs-apply(BC.rd,c(1,2),mean))/(apply(BC.rd,c(1,2),stats::sd))
diag(SES)<-0
result=SES
}else if(sig.index=="Confidence"){
BC.obsar=array(BC.obs,dim=dim(BC.rd))
alpha=(apply(BC.obsar>BC.rd,c(1,2),sum))/rand
alpha2=(apply(BC.obsar<BC.rd,c(1,2),sum))/rand
alpha[which(alpha2>alpha, arr.ind = TRUE)]=-alpha2[which(alpha2>alpha, arr.ind = TRUE)]
result=alpha
}
rownames(result)=rownames(BC.obs)
colnames(result)=colnames(BC.obs)
output=list(index=result,sig.index=sig.index)
if(output.bray)
{
output=c(output,list(BC.obs=BC.obs))
}
if(detail.null)
{
rownames(BC.rd)=rownames(BC.obs)
colnames(BC.rd)=colnames(BC.obs)
BC.randm=matrix(sapply(1:(dim(BC.rd)[3]),
function(i)
{
(iCAMP::dist.3col(BC.rd[,,i]))[,3]
}),ncol=(dim(BC.rd)[3]))
colnames(BC.randm)=paste0("rand",1:ncol(BC.randm))
output=c(output,list(rand=data.frame((iCAMP::dist.3col(BC.rd[,,1]))[,1:2,drop=FALSE],
BC.randm,stringsAsFactors = FALSE)))
}
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.